解密一颗芯片设计的全生命周期算力需求

EETOP 2022-07-19 12:08


对广大半导体设计公司而言,算力资源规划和现金流之间的平衡,啧啧,是一门艺术。

多一分是浪费,少一分则崩溃。


我们曾经在初创型IC企业必备白皮书成长型IC企业必备白皮书里分别画过以下两张图:

左图名字叫做:守护现金流

这年头现金流的重要性,不必多说。


右图名字叫做:人生就是一场豪赌

不管是初创IC设计公司还是成熟公司,新开始一个项目,总是面临着前路未知的情况:

1. 周期性存在突发算力高峰需求,涉及到先进制程问题更加显著;

2. 每次调整制程,都面临新的资源预估永远估不准

3. 可能需要某些内部不可用的内存和计算资源


我们今天认真盘一盘,怎么把这门艺术拉下神坛。



先给大家一个直观感受。


下图是我们某客户全生命周期月度算力实际用量曲线整个芯片项目全流程为18个月,涉及前端、验证、后端三大团队。


1.  前4个月,只涉及到前端布局与架构,对于算力需求不高,因此月度算力需求较少;

2.  从5月开始,前端、验证、后端均开始工作,算力开始逐步提升,第11个月达算力小高峰,在第16个月达算力最高峰,月度调度峰值达到百万级核时以上

3.  算力波峰和波谷的核数差距在20倍以上

4.  算力在第16个月达到最高峰后,迅速下降。


下面我们手把手教你怎么把算力规划拉下神坛:


Part 1  小白版算法

Part 2  老司机版算法

Part 3  全年现实算力需求折算

Part 4  一个并不艰难的选择



Part 1 小白版算法针对的是:项目全新,团队人员也比较新,需要从零计算
Part 2 老司机版算法针对的是:项目全新,但有类似经验的老人在团队,可以凭经验值估算
PS:Part 1和Part 2 二选一阅读即可

为了简化计算,我们根据现实情况作以下假设:

1.  研发团队总人数为100;

2.  团队分为前端、验证和后端3部分,人数比值2:1:1;
3.  芯片的全周期分为3个阶段,每阶段4个月  (仅适用小白版算法);
4.  三个团队主要使用资源类型:前端团队使用计算型机器;验证团队前期使用计算型机器,之后使用内存型机器;后端团队使用内存型机器 。

Part1 :小白版算法


这套小白版算法是我们根据N家客户的实际情况,得出的经验参考值:包括不同阶段,不同团队的人员配比与人力占用比例,每人job数,每人每job峰值核数
因实际团队并非全程在此项目中,部分阶段人力需折算,即人力占用比例。
在我们的参考值基础上略做调整,大家就能大致得出自己公司的相应数值啦。

这套算法通过估算不同阶段内、各个团队所需的算力峰值之和,得出每阶段的算力峰值。
各团队的峰值计算公式为每人每job峰值核数(多台机器则为每台核数*机器数)*团队人数*每人job数(每个阶段计算方式一致)。

Stage 1:前期阶段(第1-4个月)



① 阶段工作详情:前端从事设计相关工作,验证团队同步参与,工作状态都较为稳定,此阶段每月峰值核数趋于一致;
② 涉及团队:前端、验证团队;
③ 资源并发需求:前端团队每人1台10核、验证团队每人1台20核。


    该阶段峰值核时计算(计量单位:核小时):
    1月:10核*50人*1job=500
    2-4月:前端团队峰值核数=10*50*1=500 ;
    验证团队峰值核数=20*25*1=500;
    峰值核数总计为500+500=1000;
    则该阶段的峰值核数在2-4月,为1000
    (下同,不再详述这一计算过程)

    Stage 2:中期阶段(5-8月)


    ① 阶段工作详情:涉及到前端仿真、验证和部分模块的版图工作。6月在前仿最后阶段做一次大仿真,是算力小波峰,随后算力下降;
    ② 涉及团队:前端、验证和后端团队;
    ③ 资源并发需求峰值:
    5月:前端团队每人1台18核节点,每人1个job;验证团队每人4个job,每个job约18核(人力占用比例:75%);后端团队每人1台18核节点;
    6月:前端团队每人1台24核节点,每人1个job;验证团队每人6个job,每个job约24核(人力占用比例:75%);后端团队每人1台18核节点;
    7月:前端团队每人1台18核节点,每人1个job(人力占用比例:40%);验证团队每人3个job,每个job约18核;后端团队每人1个job,每job约4台18核节点;
    8月:前端团队每人1个job,每个job18核(人力占用比例:40%);验证团队每人2个job,每个job18核;后端团队每人1个job,每个job约4台24核节点。


      计算结果如下


      Stage 3:后期阶段(9-12月)

      ① 阶段工作详情:主要涉及后端仿真相关工作;
      ② 涉及团队:验证和后端团队;
      ③ 资源并发需求:
      9月:验证团队,每人4个job,每个job约18核;后端团队每人1-2个job,每个job约4台24核节点(后端人均完成1.6个job,取值1.6);
      10月:验证团队每人6个job,每个job约24核;后端团队每人1-2个job,每job约6台24核工作节点(后端人力占用比例:80%,每人2个job)
      11月:验证团队每人6个job,每个job约24核;后端团队每人1个job,每job约4台24核工作节点;
      12月:验证团队每人6个job,每个job约18核;后端团队每人1个job,每job约3台24核工作节点。

      计算结果如下
      最终全生命周期力需求图如下(计量单位:核小时):
      可以看出:
      1. 和文章开头的实际用户算力曲线趋势一致
      2. 不同月份间的峰值算力差异很大,能达到20倍左右;
      3. 不同团队在不同月份的峰值算力需求差异明显。

      Part2 :老司机版算法


      如果对于未来芯片项目,你们有过来人能预估出不同团队不同阶段的算力需求,这套老司机版算法将完全适配你。
      这套算法是我们根据有项目经验的芯片研发团队的实际情况,通过填入各月每job峰值核数、每月最大并行job数,计算出各团队每月所需的算力峰值。

      下面为大家奉上这份《XXX芯片项目-资源需求调研模板》


      左边项目为不同的项目团队。
      项目团队内部可分为:前端、验证和后端组。

      Step 1将不同组、每个job所需核数或内存的峰值需求,依次填入中间的“每job峰值核数”和“每job峰值内存”栏目下,负责人填入团队负责人”栏目下




      例如:每个job需要的峰值核数为10,每个job需要峰值内存为20据经验值统计),前端负责人为Andy。


      Step 2在每月栏目下,填入各团队预期的每月并行最大job数(简称:job数)




      Job数可根据研发内部统计,也可根据job数=每人最大并行job数*人数进行计算,如团队并非全程在此项目中,人力还需折算统计。

      例如:2022年2-5月,前端团队每人最大并行job数为1,团队有50人,均100%投入在此项目中,则填入下表的job数均为:50*1*100%=50。


      Step 3计算各团队当月峰值算力并相加,得出峰值算力总计(计量单位:核小时)




      各团队的峰值计算公式:每job峰值核数*job数(每个阶段计算方式一致)。


      例如:2022年2-5月,前端团队每job峰值核数为10,job数为50;2月验证团队还未开始任务,3-5月,验证团队的每job峰值核数为20,job数为25;2-5月,后端团队还未开始任务。

      计算过程如下
      前端团队:2-5月:10*50=500
      验证团队:3-5月:20*25=500
      将各团队每月算力峰值相加,得到每月项目的算力峰值,计算得出项目各月算力峰值表

      《XXX芯片项目-资源需求调研模板》Server一栏的Middle /High 型是用户自己设定的不同机器配置,后期计算不同机型费用时会用到,跟算力需求计算无关。

      Part3 :全年现实算力需求折算


      不管是小白版算法还是老司机版算法,都是一个月每天全部按峰值需求跑任务的前提下进行计算的。但实际情况下,肯定不需要一直按峰值顶格跑。

      我们折算一下:
      全月全资源峰值用量:峰值核数*30天*24小时
      全月实际用量可能是:峰值核数*22天*8小时

      用小白版算法的数据来调整:
      6月算力小波峰:后端按30天*18小时估算,验证按30天*16小时估算;
      10月算力大波峰:后端按30天*24小时估算,验证按照30天*16小时估算。

      得出下表,并绘制成相应曲线图:


      灰色曲线为按峰值计算的算力需求
      橙色曲线为折算后实际需要的算力 

      Part4 :一个并不艰难的选择


      好了,全生命周期算力需求算完了。
      到了算账的环节了。

      灰色代表当月按峰值顶格算的用量橙色代表月度实际用量。
      绿色代表本地资源,必须按这一阶段需求峰值准备,也就是按灰色来准备。买不到峰值,肯定会影响到芯片项目进度。

      如果是纯本地,就是按绿色这根线买。现金流是必须要动用一大笔的了,采购周期也是必须要考虑的。
      按照本文开头我们某客户全生命周期月度算力实际用量曲线波峰、波谷间差距可高达20倍,月调度核时峰值能达到百万级以上。顶格买……

      如果是全云端,就是按橙色这根线花钱。想用就用,不想用就关掉,用了才花钱。现金流逐步平缓支出。

      绿色线橙色线中间的差距(图中阴影部分),各人可能有各人的体会。
      算力资源规划VS现金流
      芯片项目周期VS市场竞争格局
      具体怎么权衡和取舍,还是要看企业自己。

      一颗芯片设计完整生命周期下,不同阶段,不同应用场景,对算力更精细的需求差异,我们相应的推荐和建议,以后再聊。

      END -

      我们有个一站式IC设计云平台
      集成多种EDA应用,大量任务多节点并行
      应对短时间爆发性需求,连网即用
      跑任务快,原来几个月甚至几年,现在只需几小时
      5分钟快速上手,拖拉点选可视化界面,无需代码

      现在!我们的IC设计研发云平台支持免费试用,还送300元体验金
      扫码免费试用~


      如果你对这个一站式IC设计云平台还有更多想问的,比如:
      1、你们支持哪些EDA应用?能覆盖到我常用的软件吗?
      2、EDA应用所需的计算资源非常大,你们如何解决这个问题?
      3、把EDA研发环境部署到云上有什么好处?
      4、除了CPU,GPU/TPU/大内存的机器都有吗?
      5、你们说的“一整套即开即用的IC研发设计环境”是什么意思?从本地到云上,操作方式会改变很大吗?
      6、云端输出计算结果是否与本地完全一致?
      7、云端这么多的机器,管理得过来吗?
      8、云上有些资源很贵,有没有节约成本的方案?
      9、任务监控也能用来省钱,你们是怎么做到的?
      10、很多PDK,就有几十T,怎么到云上,而且需要持续更新?
      11、如何云上保护我们的IP资产?
      12、脚本每日都有变动,云上要增加工作量?工作脚本如何更新?
      13、云上的EDA软件怎么部署安装?
      14、License Server配置在本地和云端对计算性能/一致性/稳定性是否有影响?
      15、使用平台的工作人员比较多,能否对每个人设置使用资源的上限?
      16、公司有海外研发部门,用你们平台方便吗?
      17、怎么保障数据安全?
      ……
      答案都在这里,欢迎扫码添加小F微信(ID:iamfastone)免费获取~

      关于为应用定义的云平台
      居家办公=停工?nonono,移动式EDA芯片设计,带你效率起飞
      续集来了:上回那个“吃鸡”成功的IC人后来发生了什么?
      缺人!缺钱!赶时间!初创IC设计公司如何“绝地求生”?
      一次搞懂速石科技三大产品:FCC、FCC-E、FCP
      速石科技成三星Foundry国内首家SAFE™云合作伙伴
      EDA云平台49问
      国内超算发展近40年,终于遇到了一个像样的对手
      帮助CXO解惑上云成本的迷思,看这篇就够了
      花费4小时5500美元,速石科技跻身全球超算TOP500

      EETOP EETOP半导体社区-国内知名的半导体行业媒体、半导体论坛、IC论坛、集成电路论坛、电子工程师博客、工程师BBS。
      评论
      • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
        coyoo 2024-12-03 12:20 170浏览
      • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
        万象奥科 2024-12-03 10:24 96浏览
      • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
        youyeye 2024-12-02 23:58 94浏览
      • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
        esad0 2024-12-04 11:20 109浏览
      • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
        晶台光耦 2024-12-02 10:40 144浏览
      • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
        刘旷 2024-12-02 09:32 140浏览
      • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
        Industio_触觉智能 2024-12-03 11:28 112浏览
      •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
        锦正茂科技 2024-12-03 11:50 143浏览
      • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
        丙丁先生 2024-12-01 17:37 114浏览
      • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
        紫光展锐 2024-12-03 11:38 126浏览
      我要评论
      0
      点击右上角,分享到朋友圈 我知道啦
      请使用浏览器分享功能 我知道啦