蔚来换电站切入的是「频调」,而不是「调峰」

原创 焉知新能源汽车 2022-07-15 19:03

「可充、可换、可升级」的补能方式从来就不是蔚来一句口号,长期以来很多人对蔚来的补能方式都是和换电直接划等号的,但其实蔚来在充电技术上也有很大建树。

下面我们就来聊聊蔚来的充电技术,以及换电和电网的互动关系。

01

充电桩种类

桩柜一体式

有没有发现蔚来 20 kW 小直流快充跟 7 kW 的交流家充桩比起来,体积大很多?

因为 20 kW 小直流快充,进行交直流转换的充电机柜跟充电桩一体化,所以体积会比只有电流开关跟通讯的家充桩大很多。

充电功率上限由充电机柜内部配置的功率模块决定。

以 Tritium 的充电柜为例,每个充电功率模块是 25 KW,桩柜一体的容量能放置最多 3 组,因此表示的功率为 75KW。

充电线缆由于快充桩充电电流大,根据电功率 P = I V,直流无需考虑电抗,可推广成 P = I² R,即电功率与电流平方成正比。

电流过大会使线缆温度升高,充电电流会因此下降,从而降低充电速率。

对此有两种解决方案:

  • 增大线缆面积,提升载流量(变粗)

  • 采用更好的冷却技术,使线缆能更快降温(液冷)

Tritium 配置液冷接口,可使充电线缆更细,对车主充电使用更友好,不过价格较高。

国网常见的 60 KW 充电桩,单个模块是 15 KW,使用四个模块。

由于没使用液冷,纯靠风冷散热,当风扇全力运转时,会发出很大的噪音,况且散热效率较低,故障率较高。

桩柜一体的优点充电机柜体积较小,搬运方便,只要电容量足够接电就能工作。

缺点是受限于功率模块跟散热,充电功率上限不高。

并且造型要为充电功率妥协,皆采取又长又宽像大冰箱一样,这样安装跟运输才方便。

02

椿柜分体式

顾名思义是将充电机柜与充电桩分体设置。

将高压电经箱式变电箱(箱变)输入充电机柜,根据充电枪需求配置充电功率,能在云端监控充电桩状态,维护较方便。

充电机柜可以根据场地电容量与占地面积,决定需要多少充电功率,配置多少功率模块,并且跟充电桩的距离能灵活变化。

优点是充电功率能做到很大,大功率的功率模块放在机柜内,机柜能远离充电桩、车跟人,不受限于机柜,能自由扩充。

由于充电桩不受充电机柜限制,充电桩造型能自由变化,不用一定要用大冰箱造型,各家自建补能体系的车企都有其独特造型,可以一眼分辩出来是哪家车企的充电桩。

缺点是机柜要独立放置,需要使用场地较大。

大功率超充大多使用桩柜分体式。

大功率超充需要许多功率模块,当放置在同一个机柜内,加上散热需求,体积会很大,有时会大到一个货柜,不适合用桩柜一体式。

03

光储充

与桩柜分体式结构基本一致,额外增加储能柜,如果条件允许,可以再配上光伏和V2G充电桩,光储充是充电桩行业的新趋势。

由于大功率超充在高功率输出瞬间对电网的冲击很大,平时又会有许多电容量闲置浪费,对电网很不友善,因此需要配置储能柜,减轻对电网的冲击。

光储充目前有几种方案:

储充

通常大功率充电桩需要配置储能柜,以降低对电网的冲击。

以美国的 Electrify America(大众集团在柴油门事件后,与美国政府和解条件其中一项,需要推进电动车发展,广设充电站是计划之一)为例。

拥有 350 kW 大功率超充桩的站点,配置一套特斯拉 350 度、功率为 210 kW 的储能系统。

由于美国的电价市场化,峰谷电价差距很大,因此储能系统在电价低时存储电力,在高点输出电力,能最大限度减少对电网的影响并缓解需求激增。

况且美国的电价除了一般电费,还采取 Demand Charges(需求费用)。

消耗相同电量的客户端,会因耗电方式的不同,收到不同的电费账单。

何谓需求费用?

电力公司会截取一天中用电的最高峰值(通常是 15 分钟),收取处罚性的电费。

一般电费是用多少度收多少钱(度*电价),峰谷用电只是乘的电价不同。

需求费用则是单位时间内的最大使用功率 * 需求费用(kW * 需求费用),而且需求费用带有处罚性质,是普通电价的数十倍到上百倍,有时需求费用会占电费超过一半。

也就是美国的电力公司,希望用电客户最好用电曲线很平缓,不要忽高忽低,峰值越极端,电费越离谱。

充电桩正好就是电力公司最讨厌的忽高忽低用户,尤其大功率充电桩的峰值往往极高,会被需求费用重重处罚。

因此,美国的充电服务公司有很强的动机设置储能,毕竟电费账单上的数字不容小觑,如果场地条件允许,可以再加装光伏,这就是第二种形式─光储充。

光储充

这方面最有名当属特斯拉。

2019 年在拉斯韦加斯建造的 V3 超充,当时铺天盖地的宣传,光伏加储能,可为充电站提供源源不绝的电力,不再对电网过度依赖云云。

理想很丰满,现实很骨感

光充储一体站目前大多是利用停车棚来布置光伏,能铺开的面积有限。

受铺设的面积、当地的日照情况与设置的充电桩数量影响,光伏发电约占充电总电量 5% 到 10% 之间,距离要摆脱电网,还远的很。

像特斯拉在上海首座光储充一体站,宣传写着「光储充一体化解决方案,自然能源循环利用的「魔法」,再度点亮上海。」

结果一看,光伏铺设约 200 平方米,以上海的条件,平圴一天能发约 130 度电。

此站有 2 组 V3 机柜 6 根超充桩、1 根目的地充电桩,130 度电还不够 6 根超充桩充 1 小时呢。

储能就更小了,只有 4 个 Powerwall,1 个 Powerwall 能存 13.5 度电,4 个不过才 54 度电,充满一台 Model 3/Y 就没电了。

可见此站主要是宣传用途,不论光伏或储能占充电的比例都很小。

所以,光伏铺设面积不大的光储充一体站,光伏只有辅助充电的作用,更大的意义在于展示绿色能源的概念。

这也是为什么特斯拉很早就提出「光储充」的口号,落地却很少。

但在「光伏整县推进」的情境里,意义完全不同。

随着整县推进光伏政策的出台,中国分布式光伏迎来新一轮发展热潮。

然而建筑屋顶种类繁多、资源分散且单体规模不一,以及配电网可接纳容量受限,可能引发潮流方向改变、电压越限与误触继电保护等不利影响,希望光伏发电能就地消纳。

为此推出的解方就是「光储充」。

将附近屋顶和停车棚的光伏发电汇流,利用云端EMS管理,做到「自发自用、余电存储」。

实现能源生产与负荷平冲、缓解配电网容量压力、节省增容费用、提高客户端供电的可靠性与经济性,构筑智能微电网。

使电动车成为光伏就地消纳的帮手,而不是电网的新负担。

不过这需要大量与各部门的沟通协调工作,不是件容易的事。

V2G + 光储充

更进一步,不止将电动车当做负荷,更是储能的一员,能充能放,这是理想的终极型态。

上汽飞凡有跟特来电合作设立一个示范站,装设:

  • 40 kWp 光伏车棚

  • 210 kWh 储能

  • 9 台合计 150 kW 的直流充放电桩、1 台 45 kW 的充电桩

这里的储能用的是电动车的退役电池,是电池梯次利用的一环。

在 2021年北京大红门储能电站火灾后,能源局新版的《防止电力事故各种要求》,已经明确写到「中大型电化学储能电站不得选用三元锂电池、钠硫电池,不宜选用梯次利用动力电池。」

很多人以为是不是不能用退役电池做储能了?

依然可以,只是不能做大。

动辄 MWh 的铁定不行,几百kWh的要严格选用一致性高且能溯源的退役动力电池,像此站就是直接把动力电池整包拆下,不进行拆分。

V2G 的充电桩为了保护动力电池,功率都不会很大,此站的充放功率 16.6 kW,大多数的 V2G 充电桩功率跟此相近,在 15 kW 到 17 kW 之间。

除了平面停车场,国网还有另一种立体停车场形式的 V2G + 光储充。

在南京的江北极客空间,装设:

  • 200 kWp 光伏顶棚

  • 3 MWh 储能

  • 243 快充桩、147 慢充桩,总功率 12000 kW

是座地下两层、地上 8 层的复合停车场,在一楼的服务体验区,可供电动车企做车型展示,并设有餐饮区,提供餐点与饮料服务。

这需要很大的成本投入,国网也只做了几个试点。

阻碍 V2G 发展最大的问题是车主对电池衰减的焦虑。

电池包身为电动车最贵的部件,很多车主非常害怕电池衰减,电池只要有充放,就有损耗,差别只是不同的电池体系,损耗的程度不一。

V2G 要充放电,才能达到削峰填谷,要削峰就放电、要填谷就充电,不管如何,一定会加速电池的老化。

跟电池的损耗相比,V2G 那一点点电费显得微不足道,要说服车主别担心电池的衰减,现在电池的循环寿命已经很长,无疑痴人说梦。

光充换

利用换电站天生带储能属性,将光充储的储能换成换电站。

这方面走的最快是蔚来。

在专利 CN215663038U 中,已经将光伏与换电站结合。

前面提到,在车棚布置光伏的发电量不够多,顶多起到辅助充电的作用,在专利也证明这点。

光伏发电在此有三种利用方式:

由电网与光伏共同供电充电桩

蔚来很清楚,只靠光伏不足以支撑充电桩的充电需求,还是需要电网供电,从侧面证明车棚光伏的发电量并不多。

光伏供电换电站(余电存储)

如同一般储能站可以储存光伏的电能,换电站也能在充电桩没人充电时,储存光伏发电的电能。

光伏并网(余电上网)

在充电桩与换电站皆不需多余电能时,将光伏发电并入电网,实现从电力系统获得供电收入。

跟一般储能不同的地方,在于换电站通常不会执行从换电站向电网放电。

主要原因是电网有调峰需求时,通常也是换电高峰期,换电站无法同时兼顾,要优先照顾车主的需求。

沈斐在 2022 年的 NIO Power Day 中提到:「中午可能是大家吃饭休息的时间,很多用户去换电,那时往往是电价最贵的时候。

我们就会提前预测,那个小时大概有多少用户来换电,提前在平电的价格没那么贵的时候,把电充到满,尽量避免在最贵的那段时间充电,又不能耽误下个时间点用户来换电。」

他也提到目前蔚来有在试双向换电站,就是向电网放电,说到对电网在秒级、分钟级接受指令互动。

这不就跟上面写到的「换电站通常不会执行从换电站向电网放电」冲突吗?

沈斐讲到的是调频需求,才会需要秒级、分钟级的响应。

调峰是透过改变用电量(削峰填谷),平衡用电负荷;调频是指电力系统频率中国是 50Hz 偏离时,稳定用电频率。

调频需要跟电网的自动发电控制 AGC 配合,跟随电力调度机构下达的指令,按照调节速率实时调整发电用功率,满足电力系统频率要求。

调频的性能指针,由响应速度、调节速率和响应精度三个指针加权平均,此指针是调频调度补偿的依据,将直接影响收益。

锂电池储能在这方面比起火电,能做到快速响应、精淮调节,很适合频调辅助服务。

因此,蔚来换电站切入的是频调,而不是调峰。


添加微信,找到我们




更多阅读


独家解读:蔚来「磷酸铁锂三元」电池系统专利


蔚来正在做一场关于「能源」的大规模社会实验

蔚来专题(一)|蔚来全战略蓝图分析 — 「商业模式」

蔚来专题(二)| 蔚来全战略蓝图分析 —「BaaS 成立前提」

蔚来专题(三)|蔚来全战略蓝图分析 —「BaaS 与二手车」

蔚来专题(四)|电池技术:大电池包 + 换电 = 效率翻倍

蔚来专题(五)|蔚来 BMS 系统,对其电池梯次利用战略的意义



 


焉知新能源汽车 | 一句话点评
未经允许请勿转载到
其他公众号


/长按识别二维码关注我们/


焉知新能源汽车 新能源科技、智车科技
评论
  • 擎天柱,这个名字听起来就像是从科幻电影里走出来的英雄。但今天,我们要聊的不是那个变形金刚,而是一款同样令人兴奋的实验板——Ai8051U-LQFP48 转 89C52-DIP40 核心功能实验板。这款实验板就像是电子世界的“擎天柱”,它拥有强大的力量和无限的潜力,等待着我们去发掘和探索。 想象一下,你手中握着的不是一块普通的电路板,而是一张通往未来科技世界的门票。Ai8051U芯片,这颗强大的心脏,内置了硬件浮点运算单元(TFPU@120MHz),让你的计算速度飞起来,就像给机器人装上了翅膀。
    丙丁先生 2024-12-16 13:02 72浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-14 20:56 65浏览
  • 概述 Cyclone 10 GX器件的ALM结构与Cyclone V类似,所以在Cyclone 10 GX器件上实现TDC功能理论上是可以完全参考甚至移植自Cyclone V系列的成功案例。但是,现实却是更多的问题出现当在Cyclone 10 GX使用和Cyclone V同样策略实现TDC的时候。 本文主要记录在Cyclone 10 GX器件上实现TDC时的探索,并为后续TDC设计、测试等展开前期研究。Cyclone 10 GX ALM结构 如图1所示,Cyclone 10 GX器件的ALM结构
    coyoo 2024-12-14 17:15 68浏览
  • 串口调试助手软件:XCOM 也是一款专为嵌入式开发和硬件调试设计的强大工具,如正点原子串口调试助手 XCOM V2.6。这款软件支持多种串口参数配置,满足不同开发需求,广泛应用于嵌入式系统开发、硬件调试以及电子爱好者的项目开发中。XCOM在嵌入式开发和硬件调试中的作用主要体现在以下几个方面: 1. 串口通信测试:XCOM作为一款强大的串口调试工具,允许用户通过计算机的串口进行数据的发送与接收,从而实现对串口通信的测试。这对于验证硬件设备的通信协议、确保数据传输的正确性至关重要。 2. 数据发
    丙丁先生 2024-12-15 11:56 65浏览
  • 一、引言在数字化时代,芯片作为现代科技的核心,其制造过程却常被视作神秘的黑箱。菊地正典的《大话芯片制造》为我们揭开了这层神秘的面纱,以通俗易懂的方式,全面系统地介绍了芯片制造的各个环节。作为一名电子信息技术专业的教育工作者,我深感这本书不仅为学生提供了宝贵的知识资源,也让我对芯片制造及其在现代社会中的作用有了更深刻的理解。二、生活中的芯片印记芯片的影响渗透到我们日常生活的每一个角落。从智能手机的闹钟唤醒,到交通卡的便捷支付,再到智能家居的智能化功能,芯片以其强大的运算和处理能力,为我们的现代生活
    月光 2024-12-16 11:52 58浏览
  •        霍尔传感器是一种基于霍尔效应的传感器。霍尔效应指的是当通过一个导体的电流受到外部磁场的影响时,导体内部将会产生一种电场,使得在导体两端的电势差发生变化,这种电势差变化称为霍尔电势差。利用这种现象,可以设计出一种可以测量磁场强度和方向的传感器,即霍尔传感器。  霍尔传感器分为线型霍尔传感器和开关型霍尔传感器两种。  (一)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。开关型霍尔传感器还有一种特
    锦正茂科技 2024-12-14 10:58 61浏览
  • 在现代生活中,我们经常会遇到需要检测电线是否带电的情况。这时,一款好用的数显测电笔就显得尤为重要了。今天,我想跟大家分享一下DELIXI数显测电笔的使用方法,通过一个故事来讲述它如何帮助我们解决生活中的小麻烦。 在一个阳光明媚的周末,小明决定对他家的电路进行一次全面的检查。他知道,虽然自己不是专业的电工,但有了DELIXI数显测电笔的帮助,他也能轻松应对。 小明拿出了DELIXI数显测电笔,这款测电笔设计得非常人性化,操作起来也很简单。他首先注意到了测电笔上的两个按键:DIRECT(A键)和
    丙丁先生 2024-12-16 12:58 47浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(瑞士证券交易所股票代码:AMS)于10月23日在深圳益田威斯汀酒店举办了艾迈斯欧司朗中国发展中心(以下简称,CDC)圆桌论坛。本次论坛以“智能化时代,以多元应用场景和技术 助力中国市场加速发展”为核心议题,探讨在人工智能驱动的市场趋势下,CDC如何助力中国伙伴把握时代机遇,推动大中华地区业务稳健增长,展示了艾迈斯欧司朗对中国市场的信心。立足中国 贴近本土客户需求在全球经济增速放缓和国际形势复杂多变的背景下,中国市场依然保持了稳定的增长势态,并释放出强大的
    艾迈斯欧司朗 2024-12-16 18:00 81浏览
  • 家用国产固态继电器(SSR)已成为各行各业的基石,性能可靠、设计紧凑、效率高。这些先进的开关设备取代了传统的机电继电器,具有静音运行、使用寿命更长、可靠性更高等诸多优点。家用SSR专为从工业自动化到家用电器等各种应用而设计,展示了本地制造商的独创性和竞争力。国产固态继电器特点和优势家用SSR采用半导体技术制造,与传统继电器相比,具有很强的耐磨性。主要特点包括:静音无振动运行:SSR使用半导体元件进行开关,消除了机械噪音。响应时间快:是工业控制系统中高速开关的理想选择。耐用性:没有移动部件,即使在
    克里雅半导体科技 2024-12-13 16:49 45浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-13 23:20 58浏览
  • 在现代软件开发领域,效率和可靠性是企业在竞争中取胜的关键。本文将深入探讨 ANA Systems 如何通过引入业界领先的 CI/CD 平台——CircleCI,克服传统开发流程的瓶颈,实现开发运营效率的全面提升。同时,本文还将详细解析 CircleCI 的核心优势,包括其强大的自动化功能、广泛的工具整合能力,以及为企业量身定制的支持服务,揭示其如何助力 ANA Systems 在「新一代国内旅客项目」中脱颖而出。这一案例将为企业优化开发流程、提升竞争力提供重要的实践参考。ANA Systems
    艾体宝IT 2024-12-16 16:44 75浏览
  • 霍尔传感器的原理        霍尔传感器是一种固体的传感器,其输出电压与磁场强度成比例。顾名思 义,这种器件是依赖于霍尔效应原理工作的。霍尔效应原理是在导体通电 和加有磁场的情况下,在导体的横向 上会产生电压。电子(在实践中多数载流子最常被使 用)在外部电场的驱动下会产生“漂移”,当暴露于磁场中时,这些运动 的带电粒子会受到一个垂直于电场和 磁场的力的作用。这个力会让导体的边缘充电,一边为正,一边为负。边
    锦正茂科技 2024-12-14 11:41 56浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦