源码|OpenCVDNN+YOLOv7目标检测

OpenCV学堂 2022-07-15 15:57

点击上方蓝字关注我们

作者:王博,极视角科技算法研究员

微信公众号:OpenCV学堂

关注获取更多计算机视觉与深度学习知识

简单说明

分别使用OpenCV、ONNXRuntime部署YOLOV7目标检测,一共包含12个onnx模型,依然是包含C++和Python两个版本的程序。

编写这套YOLOV7的程序,跟此前编写的YOLOV6的程序,大部分源码是相同的,区别仅仅在于图片预处理的过程不一样。YOLOV7的图片预处理是BGR2RGB+不保持高宽比的resize+除以255

由于onnx文件太多,无法直接上传到仓库里,需要从百度云盘下载, 
链接: https://pan.baidu.com/s/1FoC0n7qMz4Fz0RtDGpI6xQ 密码: 7mhs
下载完成后把models目录放在主程序文件的目录内,编译运行

使用opencv部署的程序,有一个待优化的问题。onnxruntime读取.onnx文件可以获得输入张量的形状信息, 但是opencv的dnn模块读取.onnx文件无法获得输入张量的形状信息,目前是根据.onnx文件的名称来解析字符串获得输入张量的高度和宽度的。

YOLOV7的训练源码是:
 https://github.com/WongKinYiu/yolov7

跟YOLOR是同一个作者的。

OpenCV+YOLOv7

推理过程跟之前的YOLO系列部署代码可以大部分重用!这里就不在赘述了,详细看源码如下:输出部分直接解析最后一个输出层就好啦!


详细实现代码如下:

#include 
#include 
#include 
#include 
#include 
#include 

using namespace cv;
using namespace dnn;
using namespace std;

struct Net_config
{

    float confThreshold; // Confidence threshold
    float nmsThreshold;  // Non-maximum suppression threshold
    string modelpath;
};

class YOLOV7
{

public:
    YOLOV7(Net_config config);
    void detect(Mat& frame);
private:
    int inpWidth;
    int inpHeight;
    vector<string> class_names;
    int num_class;

    float confThreshold;
    float nmsThreshold;
    Net net;
    void drawPred(float conf, int left, int top, int right, int bottom, Mat& frame, int classid);
};

YOLOV7::YOLOV7(Net_config config)
{
    this->confThreshold = config.confThreshold;
    this->nmsThreshold = config.nmsThreshold;

    this->net = readNet(config.modelpath);
    ifstream ifs("coco.names");
    string line;
    while (getline(ifs, line)) this->class_names.push_back(line);
    this->num_class = class_names.size();

    size_t pos = config.modelpath.find("_");
    int len = config.modelpath.length() - 6 - pos;
    string hxw = config.modelpath.substr(pos + 1, len);
    pos = hxw.find("x");
    string h = hxw.substr(0, pos);
    len = hxw.length() - pos;
    string w = hxw.substr(pos + 1, len);
    this->inpHeight = stoi(h);
    this->inpWidth = stoi(w);
}

void YOLOV7::drawPred(float conf, int left, int top, int right, int bottom, Mat& frame, int classid)   // Draw the predicted bounding box
{
    //Draw a rectangle displaying the bounding box
    rectangle(frame, Point(left, top), Point(right, bottom), Scalar(00255), 2);

    //Get the label for the class name and its confidence
    string label = format("%.2f", conf);
    label = this->class_names[classid] + ":" + label;

    //Display the label at the top of the bounding box
    int baseLine;
    Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.51, &baseLine);
    top = max(top, labelSize.height);
    //rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
    putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(02550), 1);
}

void YOLOV7::detect(Mat& frame)
{
    Mat blob = blobFromImage(frame, 1 / 255.0, Size(this->inpWidth, this->inpHeight), Scalar(000), truefalse);
    this->net.setInput(blob);
    vector outs;
    this->net.forward(outs, this->net.getUnconnectedOutLayersNames());

    int num_proposal = outs[0].size[0];
    int nout = outs[0].size[1];
    if (outs[0].dims > 2)
    {
        num_proposal = outs[0].size[1];
        nout = outs[0].size[2];
        outs[0] = outs[0].reshape(0, num_proposal);
    }
    /////generate proposals
    vector<float> confidences;
    vector boxes;
    vector<int> classIds;
    float ratioh = (float)frame.rows / this->inpHeight, ratiow = (float)frame.cols / this->inpWidth;
    int n = 0, row_ind = 0///cx,cy,w,h,box_score,class_score
    float* pdata = (float*)outs[0].data;
    for (n = 0; n < num_proposal; n++)   ///ÌØÕ÷ͼ³ß¶È
    {
        float box_score = pdata[4];
        if (box_score > this->confThreshold)
        {
            Mat scores = outs[0].row(row_ind).colRange(5, nout);
            Point classIdPoint;
            double max_class_socre;
            // Get the value and location of the maximum score
            minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
            max_class_socre *= box_score;
            if (max_class_socre > this->confThreshold)
            {
                const int class_idx = classIdPoint.x;
                float cx = pdata[0] * ratiow;  ///cx
                float cy = pdata[1] * ratioh;   ///cy
                float w = pdata[2] * ratiow;   ///w
                float h = pdata[3] * ratioh;  ///h

                int left = int(cx - 0.5 * w);
                int top = int(cy - 0.5 * h);

                confidences.push_back((float)max_class_socre);
                boxes.push_back(Rect(left, top, (int)(w), (int)(h)));
                classIds.push_back(class_idx);
            }
        }
        row_ind++;
        pdata += nout;
    }

    // Perform non maximum suppression to eliminate redundant overlapping boxes with
    // lower confidences
    vector<int> indices;
    dnn::NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices);
    for (size_t i = 0; i < indices.size(); ++i)
    {
        int idx = indices[i];
        Rect box = boxes[idx];
        this->drawPred(confidences[idx], box.x, box.y,
            box.x + box.width, box.y + box.height, frame, classIds[idx]);
    }
}

int main()
{
    Net_config YOLOV7_nets = { 0.30.5"models/yolov7_736x1280.onnx" };   ////choices=["models/yolov7_736x1280.onnx", "models/yolov7-tiny_384x640.onnx", "models/yolov7_480x640.onnx", "models/yolov7_384x640.onnx", "models/yolov7-tiny_256x480.onnx", "models/yolov7-tiny_256x320.onnx", "models/yolov7_256x320.onnx", "models/yolov7-tiny_256x640.onnx", "models/yolov7_256x640.onnx", "models/yolov7-tiny_480x640.onnx", "models/yolov7-tiny_736x1280.onnx", "models/yolov7_256x480.onnx"]
    YOLOV7 net(YOLOV7_nets);
    string imgpath = "images/dog.jpg";
    Mat srcimg = imread(imgpath);
    net.detect(srcimg);

    static const string kWinName = "Deep learning object detection in OpenCV";
    namedWindow(kWinName, WINDOW_NORMAL);
    imshow(kWinName, srcimg);
    waitKey(0);
    destroyAllWindows();
}


运行测试如下:



本文作者github主页:

https://github.com/hpc203/yolov7-opencv-onnxrun-cpp-py



读书欲精不欲博

用心欲专不欲杂

扫码查看OpenCV+OpenVIO+Pytorch系统化学习路线图


 推荐阅读 

CV全栈开发者说 - 从传统算法到深度学习怎么修炼

2022入坑深度学习,我选择Pytorch框架!

Pytorch轻松实现经典视觉任务

教程推荐 | Pytorch框架CV开发-从入门到实战

OpenCV4 C++学习 必备基础语法知识三

OpenCV4 C++学习 必备基础语法知识二

OpenCV4.5.4 人脸检测+五点landmark新功能测试

OpenCV4.5.4人脸识别详解与代码演示

OpenCV二值图象分析之Blob分析找圆

OpenCV4.5.x DNN + YOLOv5 C++推理

OpenCV4.5.4 直接支持YOLOv5 6.1版本模型推理

OpenVINO2021.4+YOLOX目标检测模型部署测试

比YOLOv5还厉害的YOLOX来了,官方支持OpenVINO推理


OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 125浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 105浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 78浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 87浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 102浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 128浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 58浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 124浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 112浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 73浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 120浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦