嵌入式Linux开发必懂:基于ARM64的init用户进程究竟如何启动?

嵌入式ARM 2020-04-08 00:00
[导读] 前面的文章有提到linux启动的第一个进程为init,那么该进程究竟是如何从内核启动入口一步一步运行起来的,而该进程又有些什么作用呢?做嵌入式Linux开发,有必要对这些概念了解清楚。本文基于ARM体系的内核启动做出解析。

跳转内核前基本准备

参考./Documentation/arm64/booting.txt

Bootloader至少完成以下基本的初始化准备:

  • 设置并初始化RAM(必须),引导加载程序应找到并初始化内核将用于系统中易失性数据存储的所有RAM。它以机器相关的方式执行此操作。(它可以使用内部算法来自动定位和调整所有RAM的大小,或者可以使用机器中RAM的知识或引导加载程序设计者认为合适的任何其他方法。)

  • 设置设备树dtb(必须) , 设备树blob(dtb)必须8字节对齐,并且大小不能超过2兆字节。由于dtb将使用最大2 MB的块进行映射以可缓存,因此它不能放置在必须使用任何特定属性进行映射的任何2M区域内。注意:v4.2之前的版本还要求将DTB放置在512 MB区域内,从内核映像下方的text_offset字节开始计算。

  • 解压缩内核映像(可选),AArch64内核当前不提供解压缩器,因此如果使用压缩的Image目标(例如Image.gz),则需要由引导加载程序执行解压缩(gzip等)。对于未实现此要求的引导加载程序,可以使用未经压缩内核编译。

  • 调用内核映像(必须)。压缩内核头部如下:

    u32 code0;              /* 可执行code   */
    u32 code1;             /* 可执行code   */
    u64 text_offset;       /* 加载偏移,小端 */
    u64 image_size;        /* 有效映象尺寸,小端 */
    u64 flags;             /* 内核标志, 小端    */
    u64 res2  = 0;         /* 保留 */
    u64 res3  = 0;         /* 保留 */
    u64 res4  = 0;         /* 保留 */
    u32 magic = 0x644d5241/* 幻数,小端, "ARM\x64"  */
    u32 res5;          /* 保留(用于PE COFF偏移量) */

进入内核之前,必须满足以下条件:

  • 禁止所有具有DMA功能的设备,以免内存被虚假错误的网络数据包或磁盘数据损坏。

  • 主CPU通用寄存器设置:

    • x0 =系统RAM中设备树Blob(dtb)的物理地址。

    • x1/x2/x3 = 0(保留供将来使用)

  • CPU模式

    • 所有形式的中断都必须在PSTATE.DAIF中屏蔽(调试,SError,IRQ和FIQ)。

    • CPU必须位于EL2(推荐使用,以便可以访问虚拟化扩展)或非安全EL1中。

  • Caches, MMUs

    • MMU必须关闭。

    • 指令缓存可以打开或关闭。

    • 与加载的内核映像相对应的地址范围必须清除到PoC。如果存在系统缓存或启用了缓存的其他相关主服务器,则通常需要通过VA而不是通过设置/方式操作来维护缓存。

    • 遵循VA对架构化缓存维护的系统缓存。必须配置并启用操作。

    • 不遵循VA对架构化混存维护的系统缓存,必须配置和禁用操作(不推荐)。

  • 架构定时器

    • 必须在所有CPU上以定时器频率设置CNTFRQ,并且必须以一致的值设置CNTVOFF。如果在EL1处进入内核,则CNTHCTL_EL2必须在可用时设置EL1PCTEN(位0)。

  • 连贯性

    • 内核启动时,所有要由内核引导的CPU都必须属于同一一致性域。需要初始化定义的实现,才能在每个CPU上接收维护操作。

  • 系统寄存器

    • 所有将在其中输入内核映像的异常级别的可写体系结构系统寄存器都必须由更高级别的异常级别的软件初始化,以防止在UNKNOWN状态下执行。

    • 对CPU模式,高速缓存,MMU,架构计时器,一致性和系统寄存器的要求适用于所有CPU。所有CPU必须以相同的异常级别进入内核。

  • 主CPU必须直接跳转到内核映像的第一条指令。此CPU传递的设备树Blob必须为每个cpu节点包含一个“启用方法”属性。支持的启用方法如下所述。引导加载程序将生成这些设备树属性,并将其插入内核入口之前的blob中。

  • 具有“旋转表”启用方法的CPU在其cpu节点中必须具有“ cpu-release-addr”属性。此属性标识自然对齐的64位零初始化内存位置。

  • 具有“ psci”启用方法的CPU应该保留在内核之外(即,在内存节点中描述给内核的内存区域之外,或者在内核中通过/ memreserve /描述给内核描述的内存保留区域之外)。设备树)。内核将按照ARM文档编号ARM DEN 0022A(“ ARM处理器上的电源状态协调接口系统软件”)中的说明发出CPU_ON调用,以将CPU带入内核。设备树应包含一个“ psci”节点,参考/bindings/arm/psci.txt.

  • 第二CPU通用寄存器设置的x0/x1/x2/x3都为0,保留。

内核启动init总过程

内核启动有两种方式,压缩格式或不压缩格式,压缩模式所不同的就是其入口位于arch/ /boot/compressed/head.S,为与该路径下的代码主要负责执行执行前期的初始化为解压内核做准备。当完成解压内核后,就跳转到./arm/kernel/head.S开始启动内核。

本文仅分析不压缩方式启动内核,通过分析内核代码,整理出内核启动过程的部分顺序如下:


内核的启动与U-Boot一样,前面一段是汇编代码,然后跳转到C代码。汇编的入口在

./arm/kernel/head.S中,符号名为__HEAD,该文件包含了head-common.S。

所以从启动用户首进程init而言,我将其分成大致分为四大步:

  • head.S ,初始化通用部分环境,与芯片无关

  • start_kernel, head.S完成后,调准到start_kernel,进入C函数执行,该函数为于./init/main.c中

  • rest_init,创建init进程,以及kthredd进程,其中Init进程号为1,kthredd为内核进程。

  • 启动调度器,执行kernel_init,该函数将调用根文件系统中的init执行文件,至此用户空间的init进程就启动起来了。

head.S/head-common.S作用

剖析汇编代码比较枯燥,这里就不进行描述了。仅就其作用进行总结:

  • 检查架构,处理器和机器类型。

  • 配置MMU,创建页表条目并启用虚拟内存。

  • 在init / main.c中调用start_kernel函数。

  • 所有架构的代码相同。这也是为什么采用汇编代码的原因,规避针对不同芯片管理大量重复代码。

start_kernel阶段

该函数主要完成以下以下工作:

  • lockdep 死锁检测模块初始化,

  • RCU机制初始化:RCU(Read-Copy Update),顾名思义就是读-拷贝修改,它是基于其原理命名的。对于被RCU保护的共享数据结构,读者不需要获得任何锁就可以访问它,但写者在访问它时首先拷贝一个副本,然后对副本进行修改,最后使用一个回调(callback)机制在适当的时机把指向原来数据的指针重新指向新的被修改的数据。这个时机就是所有引用该数据的CPU都退出对共享数据的操作。

  • SMP初始化,对称多处理"(Symmetrical Multi-Processing)简称SMP,完成CPU ID的创建。

  • debug_objects_early_init,负责调试对象初始化,以便于内核调试

  • lockdep死锁检测模块初始化,lockdep的工作方式是在内核中的锁定调用包起来。每次采用或释放特定类型的锁时,都会记录该事实以及辅助详细信息,例如处理器当时是否正在处理中断。Lockdep还记录了使用新锁时还持有哪些其他锁;这是lockdep能够执行的许多检查的关键。

  • 调用setup_arch(&command_line),该函数位于arch/

    /kernel/setup.c,用于解析从bootloader传入的引导命令行。
  • 初始化控制台,以打印启动日志。

  • 初始化其他各子系统,如VFS,trace,内存管理子系统,FORK子系统,cgroup,acpi,proc文件系统,内核服务,缓存等等。

  • ……

  • 调用rest_init,以创建init进程以及内核进程,并启动内核调度器。

rest_init阶段

代码如下,其注释如下,主要作用就是先创建init进程使其进程号为1,这是第一个用户空间进程,该进程执行后在衍生出一系列的应用进程。具体取决于启动脚本或者Init的具体实现。然后创建内核进程kthreadd,该进程用于管理内核进程。该进程进程号为2。所有内核进程都是kthreadd的后代, kthreadd枚举其他内核线程;它提供了接口例程,内核服务可以在运行时动态生成其他内核进程。通过kthread_create_list维护其他内核进程。可以使用ps -ef命令从命令行查看内核线程-它们显示在[方括号]中:

static noinline void __init_refok rest_init(void)
{
    int pid;

    rcu_scheduler_starting();
    smpboot_thread_init();

    /*创建init进程,第一个用户空间进程我们
    *需要首先生成init,以便它获得pid 1,但是
    *init任务最终将要创建kthread,如果在创建
    *kthreadd之前对其进行调度,则OOPS。*/

    kernel_thread(kernel_init, NULL, CLONE_FS);
    numa_default_policy();

    /*创建kthreadd用于管理内核线程*/
    pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);

    /*RCU 锁*/
    rcu_read_lock();
    kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
    rcu_read_unlock();
    /*让内核进程kthreadd处于就绪态TASK_NORMAL*/
    complete(&kthreadd_done);

    /* 启动调度器      */
    init_idle_bootup_task(current);
    schedule_preempt_disabled();
    /* 禁用抢占的情况下调用cpu_idle */
    cpu_startup_entry(CPUHP_ONLINE);
}

kernel_init阶段

当内核调度器运行后,就会执行kernel_init函数:

static int __ref kernel_init(void *unused)
{
    int ret;

    kernel_init_freeable();
    /* 同步完成所有初始化操作 */
    async_synchronize_full();
#ifndef CONFIG_INITCALLS_THREAD
    free_initmem();
#endif
    mark_readonly();
    system_state = SYSTEM_RUNNING;
    numa_default_policy();

    flush_delayed_fput();

    /*如果使能了ramdisk执行命令启动init*/
    if (ramdisk_execute_command) {
        ret = run_init_process(ramdisk_execute_command);
        if (!ret)
            return 0;
        pr_err("Failed to execute %s (error %d)\n",
               ramdisk_execute_command, ret);
    }

    /* 如果execute_command使能,则按命令启动init*/
    if (execute_command) {
        ret = run_init_process(execute_command);
        if (!ret)
            return 0;
        panic("Requested init %s failed (error %d).",
              execute_command, ret);
    }

    /*如果前面两项都没有使能,则依次在根文件系统下寻找并启动Init*/
    if (!try_to_run_init_process("/sbin/init") ||
        !try_to_run_init_process("/etc/init") ||
        !try_to_run_init_process("/bin/init") ||
        !try_to_run_init_process("/bin/sh"))
        return 0;

    panic("No working init found.  Try passing init= option to kernel. "
          "See Linux Documentation/init.txt for guidance.");
}

从而init用户进程就启动起来了,至于最终执行的是哪一个Init可执行文件,取决于系统移植的配置,如前文描述,常见的有busybox init,systemV init,systemD init等等。

本文授权转载自公众号“嵌入式客栈”,作者:逸珺
嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 58浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 93浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 111浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 79浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 53浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 55浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 43浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 55浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 65浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 54浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 47浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 84浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 107浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦