一文聊聊自动驾驶2D和3D视觉感知算法

智驾最前沿 2022-07-13 08:30

--关注回复“40429--

领取《汽车驾驶自动化分级》(GB/T 40429-2021)

环境感知是自动驾驶的第一环,是车辆和环境交互的纽带。一个自动驾驶系统整体表现的好坏,很大程度上都取决于感知系统的好坏。目前,环境感知技术有两大主流技术路线:
①以视觉为主导的多传感器融合方案,典型代表是特斯拉;
②以激光雷达为主导,其他传感器为辅助的技术方案,典型代表如谷歌、百度等。
我们将围绕着环境感知中关键的视觉感知算法进行介绍,其任务涵盖范围及其所属技术领域如下图所示。我们在下文分别梳理了2D和3D视觉感知算法的脉络和方向。

2D视觉感知

本节我们先从广泛应用于自动驾驶的几个任务出发介绍2D视觉感知算法,包括基于图像或视频的2D目标检测和跟踪,以及2D场景的语义分割。近些年,深度学习渗透到视觉感知的各个领域,取得不错的成绩,因此,我们梳理了一些经典的深度学习算法。
1.目标检测
1.1 两阶段检测
两阶段指的是实现检测的方式有先后两个过程,一是提取物体区域;二是对区域进行CNN分类识别;因此,“两阶段”又称基于候选区域(Region proposal)的目标检测。代表性算法有R-CNN系列(R-CNN、Fast R-CNN、Faster R-CNN)等。
Faster R-CNN是第一个端到端的检测网络。第一阶段利用一个区域候选网络(RPN)在特征图的基础上生成候选框,使用ROIPooling对齐候选特征的大小;第二阶段用全连接层做细化分类和回归。这里提出了Anchor的思想,减少运算难度,提高速度。特征图的每个位置会生成不同大小、长宽比的Anchor,用来作为物体框回归的参考。Anchor的引入使得回归任务只用处理相对较小的变化,因此网络的学习会更加容易。下图是Faster R-CNN的网络结构图。
CascadeRCNN第一阶段和Faster R-CNN完全一样,第二阶段使用多个RoiHead层进行级联。后续的一些工作多是围绕着上述网络的一些改进或者前人工作的杂烩,罕有突破性提升。
1.2 单阶段检测
相较于两阶段算法,单阶段算法只需一次提取特征即可实现目标检测,其速度算法更快,一般精度稍微低一些。这类算法的开山之作是YOLO,随后SSD、Retinanet依次对其进行了改进,提出YOLO的团队将这些有助于提升性能的trick融入到YOLO算法中,后续又提出了4个改进版本YOLOv2~YOLOv5。尽管预测准确率不如双阶段目标检测算法,由于较快的运行速度,YOLO成为了工业界的主流。下图是YOLO v3的网络结构图。
1.3 Anchor-free检测(无Anchor检测)
这类方法一般是将物体表示为一些关键点,CNN被用来回归这些关键点的位置。关键点可以是物体框的中心点(CenterNet)、角点(CornerNet)或者代表点(RepPoints)。CenterNet将目标检测问题转换成中心点预测问题,即用目标的中心点来表示该目标,并通过预测目标中心点的偏移量与宽高来获取目标的矩形框。Heatmap表示分类信息,每一个类别将会产生一个单独的Heatmap图。对于每张Heatmap图而言,当某个坐标处包含目标的中心点时,则会在该目标处产生一个关键点,我们利用高斯圆来表示整个关键点,下图展示了具体的细节。
RepPoints提出将物体表示为一个代表性点集,并且通过可变形卷积来适应物体的形状变化。点集最后被转换为物体框,用于计算与手工标注的差异。
1.4 Transformer检测
无论是单阶段还是两阶段目标检测,无论采用Anchor与否,都没有很好地利用到注意力机制。针对这种情况,Relation Net和DETR利用Transformer将注意力机制引入到目标检测领域。Relation Net利用Transformer对不同目标之间的关系建模,在特征之中融入了关系信息,实现了特征增强。DETR则是基于Transformer提出了全新的目标检测架构,开启了目标检测的新时代,下图是DETR的算法流程,先采用CNN提取图像特征,然后用Transformer对全局的空间关系进行建模,最后得到的输出通过二分图匹配算法与手工标注进行匹配。
下表中的准确度采用MS COCO数据库上的mAP作为指标,而速度则采用FPS来衡量,对比了上述部分算法,由于网络的结构设计中存在很多不同的选择(比如不同的输入大小,不同的Backbone网络等),各个算法的实现硬件平台也不同,因此准确率和速度并不完全可比,这里只列出来一个粗略的结果供大家参考。
2.目标跟踪
在自动驾驶应用中,输入的是视频数据,需要关注的目标有很多,比如车辆,行人,自行车等等。因此,这是一个典型的多物体跟踪任务(MOT)。对于MOT任务来说,目前最流行的框架是Tracking-by-Detection,其流程如下:
①由目标检测器在单帧图像上得到目标框输出;
②提取每个检测目标的特征,通常包括视觉特征和运动特征;
③根据特征计算来自相邻帧的目标检测之间的相似度,以判断其来自同一个目标的概率;
④将相邻帧的目标检测进行匹配,给来自同一个目标的物体分配相同的ID。
深度学习在以上这四个步骤中都有应用,但是以前两个步骤为主。在步骤1中,深度学习的应用主要在于提供高质量的目标检测器,因此一般都选择准确率较高的方法。SORT是基于Faster R-CNN的目标检测方法,并利用卡尔曼滤波算法+匈牙利算法,极大提高了多目标跟踪的速度,同时达到了SOTA的准确率,也是在实际应用中使用较为广泛的一个算法。在步骤2中,深度学习的应用主要在于利用CNN提取物体的视觉特征。DeepSORT最大的特点是加入外观信息,借用了ReID模块来提取深度学习特征,减少了ID switch的次数。整体流程图如下:
此外,还有一种框架Simultaneous Detection and Tracking。如代表性的CenterTrack,它起源于之前介绍过的单阶段无Anchor的检测算法CenterNet。与CenterNet相比,CenterTrack增加了前一帧的RGB图像和物体中心Heatmap作为额外输入,增加了一个Offset分支用来进行前后帧的Association。与多个阶段的Tracking-by-Detection相比,CenterTrack将检测和匹配阶段用一个网络来实现,提高了MOT的速度。
3.语义分割
在自动驾驶的车道线检测和可行驶区域检测任务中均用到了语义分割。代表性的算法有FCN、U-Net、DeepLab系列等。DeepLab使用扩张卷积和ASPP(Atrous Spatial Pyramid Pooling )结构,对输入图像进行多尺度处理。最后采用传统语义分割方法中常用的条件随机场(CRF)来优化分割结果。下图是DeepLab v3+的网络结构。
近些年的STDC算法采用了类似FCN算法的结构,去掉了U-Net算法复杂的decoder结构。但同时在网络下采样的过程中,利用ARM模块不断地去融合来自不同层特征图的信息,因此也避免了FCN算法只考虑单个像素关系的缺点。可以说,STDC算法很好的做到了速度与精度的平衡,其可以满足自动驾驶系统实时性的要求。算法流程如下图所示。
3D视觉感知
本节我们将介绍自动驾驶中必不可少的3D场景感知。因为深度信息、目标三维尺寸等在2D感知中是无法获得的,而这些信息才是自动驾驶系统对周围环境作出正确判断的关键。想得到3D信息,最直接的方法就是采用激光雷达(LiDAR)。但是,LiDAR也有其缺点,比如成本较高,车规级产品量产困难,受天气影响较大等等。因此,单纯基于摄像头的3D感知仍然是一个非常有意义和价值的研究方向,接下来我们梳理了一些基于单目和双目的3D感知算法。
1.单目3D感知
基于单摄像头图像来感知3D环境是一个不适定问题,但是可以通过几何假设(比如像素位于地面)、先验知识或者一些额外信息(比如深度估计)来辅助解决。本次将从实现自动驾驶的两个基本任务(3D目标检测和深度估计)出发进行相关算法介绍。
1.1 3D目标检测
表示转换(伪激光雷达):视觉传感器对周围其他车辆等的检测通常会遇到遮挡、无法度量距离等问题,可以将透视图转换成鸟瞰图表示。这里介绍两种变换方法。一是逆透视图映射(IPM),它假定所有像素都在地面上,并且相机外参准确,此时可以采用Homography变换将图像转换到BEV,后续再采用基于YOLO网络的方法检测目标的接地框。二是正交特征变换(OFT),利用ResNet-18提取透视图图像特征。然后,通过在投影的体素区域上累积基于图像的特征来生成基于体素的特征。然后将体素特征沿垂直方向折叠以产生正交的地平面特征。最后,用另一个类似于ResNet的自上而下的网络进行3D目标检测。这些方法只适应于车辆、行人这类贴地的目标。对于交通标志牌、红绿灯这类非贴地目标来说,可以通过深度估计来生成伪点云,进而进行3D检测。Pseudo-LiDAR先利用深度估计的结果生成点云,再直接应用基于激光雷达的3D目标检测器生成3D目标框,其算法流程如下图所示,
关键点和3D模型:待检测目标如车辆、行人等其大小和形状相对固定且已知,这些可以被用作估计目标3D信息的先验知识。DeepMANTA是这个方向的开创性工作之一。首先,采用一些目标检测算法比如Faster RNN来得到2D目标框,同时也检测目标的关键点。然后,将这些2D目标框和关键点与数据库中的多种3D车辆CAD模型分别进行匹配,选择相似度最高的模型作为3D目标检测的输出。MonoGRNet则提出将单目3D目标检测分成四个步骤:2D目标检测、实例级深度估计、投影3D中心估计和局部角点回归,算法流程如下图所示。这类方法都假设目标有相对固定的形状模型,对于车辆来说一般是满足的,对于行人来说就相对困难一些。
2D/3D几何约束:对3D中心和粗略实例深度的投影进行回归,并使用这二者估算粗略的3D位置。开创性的工作是Deep3DBox,首先用2D目标框内的图像特征来估计目标大小和朝向。然后,通过一个2D/3D的几何约束来求解中心点3D位置。这个约束就是3D目标框在图像上的投影是被2D目标框紧密包围的,即2D目标框的每条边上都至少能找到一个3D目标框的角点。通过之前已经预测的大小和朝向,再配合上相机的标定参数,可以求解出中心点的3D位置。2D和3D目标框之间的几何约束如下图所示。Shift R-CNN在Deep3DBox的基础上将之前得到的2D目标框、3D目标框以及相机参数合并起来作为输入,采用全连接网络预测更为精确的3D位置。
直接生成3DBox:这类方法从稠密的3D目标候选框出发,通过2D图像上的特征对所有的候选框进行评分,评分高的候选框即是最终的输出。有些类似目标检测中传统的滑动窗口方法。代表性的Mono3D算法首先基于目标先验位置(z坐标位于地面)和大小来生成稠密的3D候选框。这些3D候选框投影到图像坐标后,通过综合2D图像上的特征对其进行评分,再通过CNN再进行二轮评分得到最终的3D目标框。M3D-RPN是一种基于Anchor的方法,定义了2D和3D的Anchor。2D Anchor通过图像上稠密采样得到,3D Anchor是通过训练集数据的先验知识(如目标实际大小的均值)确定的。M3D-RPN还同时采用了标准卷积和Depth-Aware卷积。前者具有空间不变性,后者将图像的行(Y坐标)分成多个组,每个组对应不同的场景深度,采用不同的卷积核来处理。上述这些稠密采样方法计算量非常大。SS3D则采用更为高效的单阶段检测,包括用于输出图像中每个相关目标的冗余表示以及相应的不确定性估计的CNN,以及3D边框优化器。FCOS3D也是一个单阶段的检测方法,回归目标额外增加了一个由3D目标框中心投影到2D图像得到的2.5D中心(X,Y,Depth)。
1.2 深度估计
不管是上述的3D目标检测还是自动驾驶感知的另一项重要任务——语义分割,从2D扩展到3D,都或多或少得应用到了稀疏或稠密的深度信息。单目深度估计的重要性不言而喻,其输入是一张图像,输出是相同大小的一张由每个像素对应的场景深度值组成的图像。输入也可以是视频序列,利用相机或者物体运动带来的额外信息来提高深度估计的准确度。
相比于监督学习,单目深度估计的无监督方法无需构建极具挑战性的真值数据集,实现难度更小。单目深度估计的无监督方法可分为基于单目视频序列和基于同步立体图像对两种。前者是建立在运动相机和静止场景的假设之上的。在后者的方法中,Garg等人首次尝试使用同一时刻立体校正后的双目图像对进行图像重建,左右视图的位姿关系通过双目标定得到,获得了较为理想的效果。在此基础上,Godard等人用左右一致性约束进一步地提升了精度,但是,在逐层下采样提取高级特征来增大感受野的同时,特征分辨率也在不断下降,粒度不断丢失,影响了深度的细节处理效果和边界清晰度。为缓解这一问题,Godard等人引入了全分辨率多尺度的损失,有效减少了低纹理区域的黑洞和纹理复制带来的伪影。但是,这对精度的提升效果仍是有限的。
最近,一些基于Transformer的模型层出不穷,旨于获得全阶段的全局感受野,这也非常适用于密集的深度估计任务。有监督的DPT中就提出采用Transformer和多尺度结构来同时保证预测的局部精确性和全局一致性,下图是网络结构图。
2.双目3D感知
双目视觉可以解决透视变换带来的歧义性,因此从理论上来说可以提高3D感知的准确度。但是双目系统在硬件和软件上要求都比较高。硬件上来说需要两个精确配准的摄像头,而且需要保证在车辆运行过程中始终保持配准的正确性。软件上来说算法需要同时处理来自两个摄像头的数据,计算复杂度较高,算法的实时性难以保证。与单目相比,双目的工作相对较少。接下来也同样从3D目标检测和深度估计两方面进行简单介绍。
2.1 3D目标检测
3DOP是一个两阶段的检测方法,是Fast R-CNN方法在3D领域的拓展。首先利用双目图像生成深度图,将深度图转化为点云后再将其量化为网格数据结构,再以此为输入来生成3D目标的候选框。与之前介绍的Pseudo-LiDAR类似,都是将稠密的深度图(来自单目、双目甚至低线数LiDAR)转换为点云,然后再应用点云目标检测领域的算法。DSGN利用立体匹配构建平面扫描体,并将其转换成3D几何体,以便编码3D几何形状和语义信息,是一个端到端的框架,可提取用于立体匹配的像素级特征和用于目标识别的高级特征,并且能同时估计场景深度和检测3D目标。Stereo R-CNN扩展了 Faster R-CNN 用于立体输入,以同时检测和关联左右视图中的目标。在RPN之后增加额外的分支来预测稀疏的关键点、视点和目标尺寸,并结合左右视图中的2D边界框来计算粗略的3D目标边界框。然后,通过使用左右感兴趣区域的基于区域的光度对齐来恢复准确的3D边界框,下图是它的网络结构。
2.2 深度估计
双目深度估计的原理很简单,就是根据左右视图上同一个3D点之间的像素距离d(假设两个相机保持同一高度,因此只考虑水平方向的距离)即视差,相机的焦距f,以及两个相机之间的距离B(基线长度),来估计3D点的深度,公式如下,估计出视差就可以计算出深度。那么,需要做的就是为每个像素点在另一张图像上找出与之匹配的点。
对于每一个可能的d,都可以计算每个像素点处的匹配误差,因此就得到了一个三维的误差数据Cost Volume。通过Cost Volume,我们可以很容易得到每个像素处的视差(对应最小匹配误差的d),从而得到深度值。MC-CNN用一个卷积神经网络来预测两个图像块的匹配程度,并用它来计算立体匹配成本。通过基于交叉的成本汇总和半全局匹配来细化成本,然后进行左右一致性检查以消除被遮挡区域中的错误。PSMNet提出了一个不需要任何后处理的立体匹配的端到端学习框架,引入金字塔池模块,将全局上下文信息纳入图像特征,并提供了一个堆叠沙漏3D CNN进一步强化全局信息。下图是其网络结构。

转载自智车科技,文中观点仅供分享交流,不代表本公众号立场,如涉及版权等问题,请您告知,我们将及时处理。

-- END --

智驾最前沿 「智驾最前沿」深耕自动驾驶领域技术、资讯等信息,解读行业现状、紧盯行业发展、挖掘行业前沿,致力于助力自动驾驶发展与落地!公众号:智驾最前沿
评论
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 53浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 399浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 198浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 437浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 101浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦