D类音频功放 OEP30W

TsinghuaJoking 2020-04-05 00:00

简介

OEP30WD类音频功率放大模块是集成了OEP30W IC芯片的模块。这么小的模块可以输出30W的音频功率着实令人惊奇。

除此之外,还有令人不解的是,通过简单的网络搜索,该芯片的数据手册(DATASHEET)居然找不到,所能够找到的就是该芯片已经成型的OEM模块。

OPE30W D类音频功率放大模块

今日在淘宝上订购了该音频功率放大模块,主要用于改造声音信标中的音频功率放大,原来使用是BTL输出的L2726音频功放,在工作时,功放发热厉害。需要借助于信标外部金属壳来完成散热。相应的测试参见下文:

  • 声音信标长啥样子? [1]

1. OEP30W模块外部引脚定义

下面是OEP30W外部引脚定义:

OEP30W音频功放模块引脚功能定义

2. OEP30W模块规格

下面表格给出了OEP30W的主要技术参数指标。

功放的规格

由于购买到的OEP30W模块的引脚采用7PIN,100mil的插针引脚,在实验之前需要将外部的插针焊接在模块上。这样便于使用面包板进行测试器静态参数。

焊接引脚插针

3. 模块使用注意事项

下面是在模块销售淘宝网站给出的模块使用注意事项:

1、功放板供电后,接喇叭的2个焊盘之间的直流电压0V,喇叭焊盘与GND之间直流电压为电源电压一半。

2、选用4欧喇叭,电源电压不能超过16V,否则芯片发热过高容易损坏功放。选用8欧喇叭,电源电压不能超过24V,否则电压过高击穿功放芯片。

3、功放板通电后,手不能触碰板上元器件引脚,因为人体干扰信号干扰数字功放的时序,导致损坏芯片,人体带静电——强高压会出现击穿损坏芯片,人体静电的危害务必要知道。

4、电源电压要稳定,尽量采用开关电源与电池供电。电源不能超过板子工作电压,否则烧坏芯片,数字功放特娇气,不比模拟功放,工作方式完全不一样。

5、喇叭接线尽量用音响线控制在3米以内,线太长负载的电感量增大并产生自感电压过高击穿功放芯片,长线接喇叭建议考虑加二极管(IN5819)实现对自感电压的释放保护芯片。6、8欧姆喇叭基本无需加散热片,小于8欧姆喇叭,如果芯片温度高于60度,因立即停止工作,加散热片扇热,否则温度升高会立即烧掉芯片。

功能实验测试

1. 实验的电路板

将焊接好的OEP30W模块置于面包板上,将对应的VCC,GND连接12V工作电源。

使用音频信号发生器作为 模块的音频激励信号。

测试电路板

2. 上电静态测试

(1)输出电压

  • VCC:11.80V
  • SP+:5.80V
  • SP- :5.81V
  • CS:9.15V

将CS接地,输出的波形就是0了。静态工作电流大约10mA。

CS=0V时模块的SP+,SP-的输出

(2)输出波形:

将CS悬空,此时SP+,SP-的输出如下图所示:

没有输入信号时SP+,SP-的波形

(3)加入测试信号

在IN+加入正弦波信号,频率:1.057kHz,幅度(交流有效值)0.1V。

输入音频测试信号
在IN+加入信号输出信号

2. 加入扬声器

(1)扬声器负载:在模块SP+,SP-两个引脚加入负载扬声器,组口4Ω。在没有接入音频信号之前,模块工作电流大约为10mA。

负载扬声器,阻抗4Ω

(2)高频辐射干扰:

评估D类扬声器所产生的高频谐波对于外部的干扰,使用DSA815频谱仪外加高频发达接收头,测试在扬声器周围的电磁场的频谱。

下面是音频功放没有开启之前所接受到的射频频谱。其中在高频段是一些北京地区的调频广播的的频谱。

将音频功放开启之后,对应的频谱出现了改变,如下图所示。可以看到干扰一直延伸到广播频段。

在功放开启之后的频谱

为了看清前面的频谱的细节,使用DSA815测量0~5MHz之间的空间电磁场的频谱。下面是在OEP30W没有工作时,空间电磁场的背景频谱。

低频部分的空间电磁场,在OEP30W没有工作之前

OEP30W加电之后,对应的空间电磁场的频谱如下图所示。其中清晰的看出,空间的谐波干扰主要来自于OEP30W的PWM的工作谐波频谱。

低频部分的空间电磁场,在OEP30W工作之后

为了消除D类功放对于外部射频干扰,使用磁珠连接在扬声器的引线上。下图的左边是在扬声器的外部引线上增加了一对磁珠。

滤除射频信号的磁珠

测量空间电磁干扰,如下图所示,其中在50MHz以上的电磁干扰明显降低了。

增加了磁珠滤波之后的频谱

3. 加入音频信号

将信号源信号引入OPE30W的IN+管脚之后,扬声器突然出现振荡信号。该信号与输入的音频信号无关。如果将扬声器撤离,OEP30W的输出则是正常的信号,如前面所测量的结果。

将信号源输入IN-管脚,模块输出没有响应。

直接将信号源引入IN-引起的输出振荡

在输入端串接10k欧姆的电阻便可以消除振荡的情况发生。

在IN+输入串接10k电阻

接入串接电阻之后,OEP30W放大倍数降低了。

  • 输入信号:0.538Vrms
  • 功放输出:2.63Vrms 放大倍数约为:4.88倍。
在输入端串联10k电阻之后的输出波形

总结

  1. OEP30W的基本工作配置:VCC=+12V,GND= 0V,CS悬空;
  2. 在扬声器输出中串入磁珠可以降低空间射频干扰;
  3. 将信号接入IN+,并串入电阻,改变模块的增益,减少模块的自激振荡。
TsinghuaJoking 这是一个公众号,它不端、不装,与你同游在课下、课上。 卓晴博士,清华大学中央主楼 626A。010-62773349, 13501115467,zhuoqing@tsinghua.edu.cn
评论
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 82浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 112浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 88浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 91浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 80浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 88浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 96浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 106浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 113浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 88浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 93浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 77浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 96浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦