解读快速傅里叶变换中的频谱泄露效应

云脑智库 2022-07-07 00:00


来源 | 微波射频网

智库 | 云脑智库(CloudBrain-TT)

云圈 | “云脑智库微信群”,请加微信:15881101905,备注您的研究方向

声明 | 本号聚焦相关知识分享,内容观点不代表本号立场,可追溯内容均注明来源,若存在版权等问题,请联系(15881101905,微信同号)删除,谢谢。

快速傅里叶变换(FFT)实现了时域到频域的转换,是信号分析中最常用的基本功能之一。FFT变换时,总是从离散数据中选取一部分处理,将其称为一帧数据。而且FFT是在一定假设下完成的,即认为被处理的信号是周期信号。因此,FFT之前会对这一帧数据进行周期扩展。

以CW信号为例,如果选取的这一帧数据不是信号周期的整数倍,则在周期扩展时会存在样点的不连续性,如图1所示。这将导致FFT之后得到的频谱失真,主要体现在频率成分上。理论上,频谱中只包含待测信号的频率,但实际上此时的频谱包含众多的频率分量。通常将这种现象称为频谱泄露效应。

图1. 周期扩展造成样点不连续

为了抑制频谱泄露效应,可以采用诸如Hanning、Kaiser等多种时间窗。还有一种特殊的时间窗——矩形窗,其实就是不加时间窗,直接对原始样点做FFT变换,上述例子就是采用矩形窗的情况。只有采用矩形窗,而且窗宽度不是信号周期的整数倍时,才会发生明显的频谱泄露效应。

本文的重点并非介绍如何采用时间窗抑制频谱泄露效应,而是从理论上剖析采用矩形窗时造成频谱泄露的本质。

1. 为什么会造成频谱泄露?

图1所示的样点不连续也意味着相位不连续,存在180°相位反转。总体来讲,可以将其理解为相位调制,而且是一种特殊的相位调制,调制信号不是经典的正弦波信号,而是方波信号,可以将调制信号写为如下形式:

式中,T 为调制信号的周期,为一帧波形时长的两倍。这意味着在t=0 时刻,载波的相位发生了变化。

既然可以理解为相位调制,则可将已调信号写为如下形式:

式中φm为相位偏移,对于图1的例子,φm=π。很显然,调制信号已经不再是单频点信号,而是多频点信号。对于图2所示的周期为T 的方波信号,其频谱包含DC、基波及其众多的奇次谐波分量 。

图2. 调制信号p(t)的时域波形

满足Dirichlet 条件时,任何周期函数均可以进行傅里叶级数展开,p(t) 可以写为:

式中,Ω为方波信号的基波频率,Ω=2π/T。

经过计算,可以得到an 和bn 如下:

这意味着p(t) 只包含DC、基波及其奇次谐波,但阶数越高,谐波强度越弱。

可以将p(t) 重新写为:

为简便起见,首先考虑调制信号只包含DC和基波的情况,这又回到经典的相位调制。

将其代入已调信号up (t) 后可得

上式可以写为复指数形式

为了进一步分析,可将进行傅里叶级数展开,其展开式为宗数为b1φm的第一类贝塞尔函数:

将其代入复指数表达式

则up (t) 可重新表示为

可以看出,当只考虑调制信号的DC和基波时,已调信号up (t)将包括ωc及ωc+nΩ(n为整数) 等众多频率分量。

实际中调制信号还包含丰富的谐波分量,因此对载波进行相位调制后的频谱更加丰富。面对的困难是,考虑的谐波越多,公式推导越复杂。为了简化,下面只考虑到3次谐波。

对应的已调信号为

类似地,可以写为如下复指数形式

分别进行傅里叶级数展开为

经过一番推导可得

由此可见,当考虑到调制信号的三次谐波时,已调信号up (t) 的频谱更加丰富,包括ωc、ωc+nΩ 、ωc+3kΩ及ωc+nΩ+3kΩ(n,k为整数) 等众多频率分量。

以此类推,当考虑p(t) 更高阶的谐波时,将会有更多的频率项,但是从频率上看,各个频率分量都是均匀分布的,而且相邻谱线之间的间距始终为基波Ω。

2. 下面讨论一下up (t) 主要频率分量的幅度。

(1) 首先考虑载波ωc的幅度,以上面考虑到三次谐波的情况为例。当nΩt+3kΩt=0 时,对应的就是载波分量。这要求n=-3k (k 为整数),此时可以得到:

对于第一类贝塞尔函数Jn (x),其奇偶特性如下:

当n 为奇数时,Jn (x) 为奇函数;当n 为偶数时,Jn (x) 为偶函数。

进一步化简可得

因以上考虑的都是相位偏移 φm=π的情况,故b1φm=2,b3φm=2/3,代入上式得

对于第一类贝塞尔函数,Jn (2)=Jn (2/3)=0 (n≥5),则

根据第一类贝塞尔函数,上式计算得到的载波信号幅度非常微弱。

(2) 频率分量ωc+Ω的幅度分析。当n=-3k+1 时,对应的就是ωc+Ω频率分量。

由于,且Jn (2)=Jn (2/3)=0 (n≥5),上式进一步化简得

该频率分量的幅度要远远大于载波的幅度!

(3) 频率分量ωc-Ω的幅度分析。当n=-3k-1 时,对应的就是ωc-Ω频率分量。

由于,且Jn (2)=Jn (2/3)=0 (n≥5),上式进一步化简得

该频率分量的幅度也远远大于载波的幅度!

而且对比 ωc+Ω 和 ωc-Ω 两个频率分量,它们的幅度相同!也就是说,从频谱上看,它们是关于载波对称的!

(4) 频率分量ωc+2Ω 的幅度分析。当n=-3k+2 时,对应的就是ωc+2Ω 频率分量。

虽然(n,k) 的组合很多,但是当阶数较大时,Jn (2)= Jn (2/3)=0 (n≥5),因此可得

经过计算,该频率分量的幅度非常微弱。

(5) 频率分量ωc-2Ω 的幅度分析。当n=-3k-2 时,对应的就是ωc-2Ω 频率分量。

虽然(n,k) 的组合很多,但是当阶数较大时,Jn (2)= Jn (2/3)=0 (n≥5),因此可得

该频率分量与ωc+2Ω 的幅度相同,依然非常微弱。

上面从理论上解释了频谱泄露的起因,而且当发生频谱泄露时,会产生众多的、分布均匀的频率分量,相邻谱线的频间距取决于FFT时一帧波形的时长。

值得一提的是,相位偏移 φm不仅对各个频率分量的幅度有影响,也会影响频率分布,以后有机会再来解释这一点。

3. 通过使用AWG播放一个CW信号验证上述推导。

使用AWG 输出一个100MHz 频率的CW 信号,波形时长为10.5个周期,如图3所示,当循环播放时便可以模拟上述的相位不连续性,会造成180°的相位跳变。

对于这种波形时长不是信号周期整数倍的情况,当单次播放时,信号的频率就是100MHz ,但是当连续播放时相当于引起了相位调制,按照上述理论分析,频谱中将包含很多频率成分,图4给出了信号的实测频谱。

本例中,波形时长为105ns,这意味着频谱中相邻谱线之间的频率间隔约为:4.76MHz,这与图4所示的频谱是吻合的。

图3. 波形时长为10.5个信号周期

图4. 时域波形及其频谱

小结

对于使用矩形窗进行FFT时可能存在的频谱泄露效应,本文从理论上定性地进行了分析。究其原因,是因为当进行周期扩展时造成了相位的不连续。相位的不连续可以当作相位调制来处理,经过一系列推导最终解释了为什么会出现众多的频率成分。文中还对特定相位偏移情况下的频率分量的幅度进行了分析。文末通过一个实例模拟了这种相位不连续,并测试了波形和频谱,实测结果与理论推导相吻合。

作者:Knigh

- The End

版权声明:欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系删除。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

投稿/招聘/推广/合作/入群/赞助 请加微信:15881101905,备注关键词

“阅读是一种习惯,分享是一种美德,我们是一群专业、有态度的知识传播者.”

 阅读原文加入知识星球,发现更多精彩内容.

 分享💬 点赞👍 在看❤️@以“三连”行动支持优质内容! 

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  • 在追求更快、更稳的无线通信路上,传统射频架构深陷带宽-功耗-成本的“不可能三角”:带宽每翻倍,系统复杂度与功耗增幅远超线性增长。传统方案通过“分立式功放+多级变频链路+JESD204B 接口”的组合试图平衡性能与成本,却难以满足实时性严苛的超大规模 MIMO 通信等场景需求。在此背景下,AXW49 射频开发板以“直采+异构”重构射频范式:基于 AMD Zynq UltraScale+™ RFSoC Gen3XCZU49DR 芯片的 16 通道 14 位 2.5GSPS ADC 与 16
    ALINX 2025-03-13 09:27 32浏览
  •        随着人工智能算力集群的爆发式增长,以及5.5G/6G通信技术的演进,网络数据传输速率的需求正以每年30%的速度递增。万兆以太网(10G Base-T)作为支撑下一代数据中心、高端交换机的核心组件,其性能直接决定了网络设备的稳定性与效率。然而,万兆网络变压器的技术门槛极高:回波损耗需低于-20dB(比千兆产品严格30%),耐压值需突破1500V(传统产品仅为1000V),且需在高频信号下抑制电磁干扰。全球仅有6家企业具备规模化量产能力,而美信科
    中科领创 2025-03-13 11:24 40浏览
  • 文/杜杰编辑/cc孙聪颖‍主打影像功能的小米15 Ultra手机,成为2025开年的第一款旗舰机型。从发布节奏上来看,小米历代Ultra机型,几乎都选择在开年发布,远远早于其他厂商秋季主力机型的发布时间。这毫无疑问会掀起“Ultra旗舰大战”,今年影像手机将再次被卷上新高度。无意臆断小米是否有意“领跑”一场“军备竞赛”,但各种复杂的情绪难以掩盖。岁岁年年机不同,但将2-3年内记忆中那些关于旗舰机的发布会拼凑起来,会发现,包括小米在内,旗舰机的革新点,除了摄影参数的不同,似乎没什么明显变化。贵为旗
    华尔街科技眼 2025-03-13 12:30 60浏览
  • 引言汽车行业正经历一场巨变。随着电动汽车、高级驾驶辅助系统(ADAS)和自动驾驶技术的普及,电子元件面临的要求从未如此严格。在这些复杂系统的核心,存在着一个看似简单却至关重要的元件——精密电阻。贞光科技代理品牌光颉科技的电阻选型过程,特别是在精度要求高达 0.01% 的薄膜和厚膜技术之间的选择,已成为全球汽车工程师的关键决策点。当几毫欧姆的差异可能影响传感器的灵敏度或控制系统的精确性时,选择正确的电阻不仅仅是满足规格的问题——它关系到车辆在极端条件下的安全性、可靠性和性能。在这份全面指南中,我们
    贞光科技 2025-03-12 17:25 92浏览
  • 一、行业背景与需求痛点智能电子指纹锁作为智能家居的核心入口,近年来市场规模持续增长,用户对产品的功能性、安全性和设计紧凑性提出更高要求:极致空间利用率:锁体内部PCB空间有限,需高度集成化设计。语音交互需求:操作引导(如指纹识别状态、低电量提醒)、安全告警(防撬、试错报警)等语音反馈。智能化扩展能力:集成传感器以增强安全性(如温度监测、防撬检测)和用户体验。成本与可靠性平衡:在复杂环境下确保低功耗、高稳定性,同时控制硬件成本。WTV380-P(QFN32)语音芯片凭借4mm×4mm超小封装、多传
    广州唯创电子 2025-03-13 09:24 41浏览
  • 北京时间3月11日,国内领先的二手消费电子产品交易和服务平台万物新生(爱回收)集团(纽交所股票代码:RERE)发布2024财年第四季度和全年业绩报告。财报显示,2024年第四季度万物新生集团总收入48.5亿元,超出业绩指引,同比增长25.2%。单季non-GAAP经营利润1.3亿元(non-GAAP口径,即经调整口径,均不含员工股权激励费用、无形资产摊销及因收购产生的递延成本,下同),并汇报创历史新高的GAAP净利润7742万元,同比增长近27倍。总览全年,万物新生总收入同比增长25.9%达到1
    华尔街科技眼 2025-03-13 12:23 47浏览
  • 曾经听过一个“隐形经理”的故事:有家公司,新人进来后,会惊讶地发现老板几乎从不在办公室。可大家依旧各司其职,还能在关键时刻自发协作,把项目完成得滴水不漏。新员工起初以为老板是“放羊式”管理,结果去茶水间和老员工聊过才发现,这位看似“隐形”的管理者其实“无处不在”,他提前铺好了企业文化、制度和激励机制,让一切运行自如。我的观点很简单:管理者的最高境界就是——“无为而治”。也就是说,你的存在感不需要每天都凸显,但你的思路、愿景、机制早已渗透到组织血液里。为什么呢?因为真正高明的管理,不在于事必躬亲,
    优思学院 2025-03-12 18:24 81浏览
  • 一、行业背景与用户需求随着健康消费升级,智能眼部按摩仪逐渐成为缓解眼疲劳、改善睡眠的热门产品。用户对这类设备的需求不再局限于基础按摩功能,而是追求更智能化、人性化的体验,例如:语音交互:实时反馈按摩模式、操作提示、安全提醒。环境感知:通过传感器检测佩戴状态、温度、压力等,提升安全性与舒适度。低功耗长续航:适应便携场景,延长设备使用时间。高性价比方案:在控制成本的同时实现功能多样化。针对这些需求,WTV380-8S语音芯片凭借其高性能、多传感器扩展能力及超高性价比,成为眼部按摩仪智能化升级的理想选
    广州唯创电子 2025-03-13 09:26 33浏览
  • DeepSeek自成立之初就散发着大胆创新的气息。明明核心开发团队只有一百多人,却能以惊人的效率实现许多大厂望尘莫及的技术成果,原因不仅在于资金或硬件,而是在于扁平架构携手塑造的蜂窝创新生态。创办人梁文锋多次强调,与其与大厂竞争一时的人才风潮,不如全力培养自家的优质员工,形成不可替代的内部生态。正因这样,他对DeepSeek内部人才体系有着一套别具一格的见解。他十分重视中式教育价值,因而DeepSeek团队几乎清一色都是中国式学霸。许多人来自北大清华,或者在各种数据比赛中多次获奖,可谓百里挑一。
    优思学院 2025-03-13 12:15 47浏览
  • 前言在快速迭代的科技浪潮中,汽车电子技术的飞速发展不仅重塑了行业的面貌,也对测试工具提出了更高的挑战与要求。作为汽车电子测试领域的先锋,TPT软件始终致力于为用户提供高效、精准、可靠的测试解决方案。新思科技出品的TPT软件迎来了又一次重大更新,最新版本TPT 2024.12将进一步满足汽车行业日益增长的测试需求,推动汽车电子技术的持续革新。基于当前汽车客户的实际需求与痛点,结合最新的技术趋势,对TPT软件进行了全面的优化与升级。从模型故障注入测试到服务器函数替代C代码函数,从更准确的需求链接到P
    北汇信息 2025-03-13 14:43 34浏览
  • 在海洋监测领域,基于无人艇能够实现高效、实时、自动化的海洋数据采集,从而为海洋环境保护、资源开发等提供有力支持。其中,无人艇的控制算法训练往往需要大量高质量的数据支持。然而,海洋数据采集也面临数据噪声和误差、数据融合与协同和复杂海洋环境适应等诸多挑战,制约着无人艇技术的发展。针对这些挑战,我们探索并推出一套基于多传感器融合的海洋数据采集系统,能够高效地采集和处理海洋环境中的多维度数据,为无人艇的自主航行和控制算法训练提供高质量的数据支持。一、方案架构无人艇要在复杂海上环境中实现自主导航,尤其是完
    康谋 2025-03-13 09:53 44浏览
  • 2025年,科技浪潮汹涌澎湃的当下,智能数字化变革正进行得如火如荼,从去年二季度开始,触觉智能RK3562核心板上市以来,受到了火爆的关注,上百家客户选用了此方案,也获得了众多的好评与认可,为客户的降本增效提供了广阔的空间。随着原厂的更新,功能也迎来了一波重大的更新,无论是商业级(RK3562)还是工业级(RK3562J),都可支持NPU和2×CAN,不再二选一。我们触觉智能做了一个艰难又大胆的决定,为大家带来两大重磅福利,请继续往下看~福利一:RK3562核心板149元特惠再续,支持2×CAN
    Industio_触觉智能 2025-03-12 14:45 26浏览
  • 文/Leon编辑/cc孙聪颖作为全球AI领域的黑马,DeepSeek成功搅乱了中国AI大模型市场的格局。科技大厂们选择合作,接入其模型疯抢用户;而AI独角兽们则陷入两难境地,上演了“Do Or Die”的抉择。其中,有着“大模型六小虎”之称的六家AI独角兽公司(智谱AI、百川智能、月之暗面、MiniMax、阶跃星辰及零一万物),纷纷开始转型:2025年伊始,李开复的零一万物宣布转型,不再追逐超大模型,而是聚焦AI商业化应用;紧接着,消息称百川智能放弃B端金融市场,聚焦AI医疗;月之暗面开始削减K
    华尔街科技眼 2025-03-12 17:37 145浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦