基于北斗卫星的纳秒级全球授时系统

云脑智库 2022-07-03 00:00

本文引用格式


刘 娅,李孝辉,赵志雄,等.基于北斗卫星的纳秒级全球授时系统[J]. 导航定位与授时, 2022, 9(3): 14-22.


基于北斗卫星的纳秒级全球授时系统


刘 娅1,2,3,李孝辉1,2,3,赵志雄1,樊多盛1,2,陈瑞琼1,许龙霞1,钦伟瑾1

(1.中国科学院国家授时中心,西安 710600;2.中国科学院时间频率基准重点实验室,西安 710600;3.中国科学院大学光电学院,北京 100049)


摘 要:北斗三号系统的基础服务可以为全球用户提供精度优于20ns的信号,更高精度的时间同步应用,需要如GNSS共视、全视、PPP或卫星双向时频传递等专用方法,成本高,并且需要专业维护,只适合小范围应用。在研究了各种高精度时间比对技术的基础上,基于国家授时中心的标准时间UTC(NTSC),提出了基于北斗卫星实时共视、实时全视和实时PPP多种技术互补融合的纳秒级全球授时方法。结合时延绝对标定与分段标定组合的设备时延标定,以及振荡器动态驯服等技术,建立了标准时间远程复现系统,由服务端和用户端两部分组成。服务端由国家授时中心维护,用户仅需要安装一台标准时间复现设备,并通过互联网或北斗短报文信道自动持续从服务端获取服务数据,即可在本地恢复出溯源至标准时间UTC(NTSC)的时间频率信号。系统可为全球用户提供与UTC(NTSC)偏差小于5ns的1PPS信号,以及万秒频率稳定度优于5×10-13、相对频偏小于5×10-14的10MHz信号,授时A类不确定度优于2ns。目前已经为多个行业提供服务。


关键词:授时;时间同步;北斗共视;全视;PPP;钟驾驭


作者简介刘娅(1982-),女,博士,研究员,主要从事时间频率测量与控制方面的研究。

通信作者李孝辉(1974-),男,博士,研究员,主要从事时频测量与卫星导航系统方面的研究。

基金项目国家自然科学基金天文联合项目(U2031125 );陕西省自然科学基金项目(2018ZDXM-GY-011);国家自然科学基金面上项目(12073033);中国科学院西部青年学者项目(XAB2020YN07)。

收稿日期:2022-02-28

修订日期:2022-04-01

中图分类号:P127.1

文献标志码:A

文章编号:2095-8110(2022)03-0014-09

doi:10.19306/j.cnki.2095-8110.2022.03.002 




0 引言

统一的时间是确保各类活动有序的关键。随着全球化进展,对时间统一的范围和性能需求也越来越高。随着北斗三号全球卫星导航系统(BeiDou-3 Navigation Satellite System,BDS-3)正式开通,标志着北斗卫星进入了全球服务阶段,BDS-3的系统时间(BDT)通过 UTC(NTSC)与国际标准时间UTC 建立联系,BDT 与协调世界时(Universal Time Coordina-ted,UTC)的偏差保持在 50ns以内(模1秒)[1]。2021年发布的《北斗卫星导航系统建设与发展》报告表明,BDS-3的基础服务可以为全球用户提供精度优于20ns的授时信号,此外还有差分增强和精密单点定位(Precise Point Positioning,PPP)等服务,具有提供更高精度的服务能力,BDT与UTC时间偏差保持在26ns以内[2]。用户通过BDS-3实际获得的时间服务性能还与使用的接收机测量性能、设备时延标定性能及信号大气传播时延改正精度等有关,用户获得的定时信号与BDT或UTC的偏差可能达到数十甚至数百纳秒。为了更准确地传递时间信号,发展了基于全球导航卫星系统(Global Navigation Satellite System,GNSS)卫星的共视、全视和PPP等时间频率比对方法,以及基于地球同步轨道(Geostationary Earth Orbit,GEO)卫星的卫星双向时频传递(Two Way Satellite Time and Frequency Transfer, TWSTFT)方法和基于光纤的时频信号比对方法,这些方法的时间比对精度可以达到纳秒甚至亚纳秒量级,主要用于守时实验室或者高性能原子钟间比对。为保证时间比对结果的准确性,产生UTC的国际计量局(Bureau International des Poids et Mesures,BIPM)会定期组织巡回校准活动,将便携的GNSS时间传递接收设备搬运至各参与比对的守时实验室,校准设备时延。

为了向用户提供精准时间服务,美国国家标准与技术研究院(National Institute of Standards and Tech-nology,NIST)开通了时间测量和分析服务系统(Time Measurement and Analysis Service,TMAS)[3]和多源共视驯钟系统(Multi-Source Common-View Dis-ciplined Clock,MSCVDC)[18],支持基于全球定位系统(Global Positioning System,GPS)共视,不断比对客户本地时间与美国国家标准时间UTC(NIST)的偏差,并通过互联网每10min向客户报告一次新结果,时间比对的A类不确定度优于2ns,合成不确定度15ns。MSCVDC还支持通过共视比对结果驯服铷钟或铯原子钟的方式为用户提供直接溯源至UTC(NIST)的时间信号,其本质是在用户所在地恢复出UTC(NIST),恢复的时间与UTC(NIST)的偏差约10ns,峰峰值不超过25ns。

英国皇家物理实验室(National Physical Laboratory,NPL)产生和保持英国的国家标准时间,开发了一套基于GPS共视的授时服务系统,可以为申请的用户提供与标准时间UTC(NPL)直接的比对服务,校准用户的时频设备,溯源至UTC(NPL)的时间不确定度为10ns(1σ),相对频率偏差为5×10-14(1σ,1天平均)[4]

中国计量科学研究院研制了一套基于GNSS共视的远程时间溯源装置(NIMDO),通过比对结果驯服铷原子钟,可产生同步于UTC(NIM)的1PPS和10MHz信号,1PPS相对于UTC(NIM)的时间偏差优于10ns(95%),10MHz相对频率偏差优于1×10-13,时间偏差测量不确定度优于5ns[5-6]

国家授时中心产生和维持着标准时间UTC(NTSC),在为北斗提供时间溯源服务基础上,以在广泛区域给用户提供更高精度的授时服务为目标,开发了标准时间远程复现系统,于2014年开始提供服务[7-10]。目前,已发展为支持基于GNSS的实时共视、全视和PPP等多种比对技术,可为全球用户提供溯源至UTC(NTSC)的时间频率信号,相对UTC(NTSC)的时间偏差小于5ns,频率偏差小于5×10-14,时间偏差测量A类不确定度优于2ns,优于国内外同类设备。


1 广域纳秒级授时原理

授时是指把标准时间通过有线或无线传送到远距离,供时间比对、时间同步使用,与一般时间传递或比对的区别是授时发播的是标准时间。国家授时中心产生和保持我国的标准时间UTC(NTSC),与UTC偏差常年保持在5ns以内(见BIPM每月发布的Circular-T)。标准时间远程复现系统以UTC(NTSC)为基准,通过实时时间比对技术和振荡器驾驭技术在用户本地恢复出与UTC(NTSC)偏差小于5ns的时间信号,频率万秒稳定度优于5×10-13,10万秒稳定度优于5×10-14,相对频偏小于5×10-14的10MHz频率信号,时间偏差测量的A类不确定度优于2ns。其中,为用户提供与UTC(NTSC)偏差小于5ns的时间信号,是指基于比对结果对振荡器驾驭后,输出的1PPS信号边沿不能完全与UTC(NTSC)主钟1PPS对齐,残余的最大偏差小于5ns。为降低该残余偏差对使用的影响,同时为用户提供对应时段的残余偏差测量值,该测量值相对真值的随机起伏即比对A类不确定度,优于2ns(24h数据的RMS)。用户使用信号的同时,辅以测量值修正后,最终可得到溯源至UTC(NTSC)的时间不确定度小于2ns。

标准时间远程复现系统使用基于GNSS的实时共视、全视和PPP三种远程比对技术,可根据应用场景自由切换三种比对手段,单独使用或加权融合;本地振荡器可选配晶体振荡器、普通性能铷振荡器、高性能铷振荡器和铯原子钟及被动氢原子钟等,测量数据更新频度支持1min、5min、10min和自定义等多种,满足各行业用户对时间、频率信号的需求。


1.1 实时共视原理

基于北斗卫星的实时共视比对基本原理是在国家授时中心的服务端观测卫星钟与UTC(NTSC)的偏差,将偏差数据通过网络实时广播给用户端,用户端设备接收偏差数据,结合本地相同时段观测的卫星钟与本地参考时间偏差,计算本地参考时间与UTC(NTSC)的偏差,为控制振荡器提供测量数据。

数据处理流程:各站利用北斗定时接收机接收北斗卫星导航信号,首先测得含有卫星钟δt(s)和接收机时间偏差的伪距ρ,然后利用接收机天线坐标和广播星历预报的卫星轨道,计算卫星和接收机真距r(含轨道预报误差),伪距与真距的差包含了卫星和接收机钟差、传播路径上的各种时延,以及卫星轨道等各种误差项,用双频伪距测量值修正电离层延迟I,用经验模型修正对流层时延T,进而计算得到含有误差的接收机时间与各颗卫星钟的钟差,最后结合事先测得的接收机时延改正参数Δt1和计数器持续监测的接收机时间与本地参考时间的时差值Ttic,生成本地参考时间与各颗北斗卫星钟的钟差TREFSVTREFSV的计算如式(1)所示。

TREFSV=Ttic+(ρ-r-I-T)/c+δt(s)-ερ-Δt1
(1)

其中,c为真空光速;引入了未知参数ερ,表示含接收机伪距观测误差在内的各种剩余误差总和。

各用户端设备按约定的观测周期,将TREFSV拟合生成该时段各卫星的与来自服务端相同观测周期、相同卫星的TREFSV拟合值做差,抵消卫星钟、卫星轨道预报误差等共性误差的影响,计算各站参考时间与标准时间的偏差。服务端只需将观测数据按约定间隔拟合后生成的广播给用户,就可以实现共视比对,数据拟合可以降低原始观测数据中随机噪声的影响,还能将实时通信数据量降低到1000字节以内,利于工程实现。

因为实时共视需要各用户端与服务端能同时观测到相同卫星,共视的卫星数量越多,越有利于降低测量随机误差;距离越近,两端观测数据的误差相关性越高,测量精度越高。结合北斗卫星在中国的几何分布和实测检验,北斗实时卫星共视最优作用距离约在3000km以内[11],更长基线可能会牺牲测量性能,为了能在更广泛区域为用户授时,引入了基于北斗的实时全视技术。


1.2 实时全视原理

为满足与服务端更远距离(基线2000km以上)用户与标准时间UTC(NTSC)高精度比对的需求,不依赖两地有共同可视卫星的卫星全视成为更优选择。传统卫星全视依靠最终精密星历和钟差产品解算钟差,只能事后生成比对结果,因主要用于守时实验室高性能原子钟间比对,守时原子钟频率变化量很小,滞后结果不影响应用。但面向广泛用户的高精度授时需求,需要考虑普通振荡器的应用场景,该类振荡器的特点是频率变化相对较快,获得测试结果的时效性直接影响时间服务性能。因此,本文提出了实时全视的解决方案,主要流程与实时共视相似,区别在于时间比对的中间媒介不是卫星钟,而是第三方机构提供的超快速星历预报产品中钟差的归算基准。将服务端生成的UTC(NTSC)与归算基准的偏差通过网络广播到用户端,用户端设备接收偏差数据,结合用户端测得的本地参考时间与归算基准的偏差,就可以获得本地参考时间与UTC(NTSC)的偏差。目前,国内外有多家机构可以提供实时全视所需超快速预报的卫星位置和钟差产品,相较其他产品,超快速预报产品的主要特点是可靠性高,轨道精度5cm(STD),钟差精度优于1.5ns(STD),已满足实时共视比对需求。

实时全视数据处理流程:各用户端设备利用北斗定时接收机接收北斗卫星导航信号,首先测得伪距ρ,然后通过第三方机构获得超快速星历预报产品,经多项式内插生成对应观测时刻的卫星位置和卫星钟差,计算卫星与接收机距离r,计算接收机时间与归算基准的偏差δt(s);然后用双频观测值计算电离层延迟改正值I,使用经验模型改正对流层延迟T,并进行Sagnac效应、卫星天线相位中心、接收机天线相位中心和卫星发射时延改正,改正量用Δtother表示,接收机的时延改正量为Δt1,计数器测得接收机时间与本地参考时间的时差值为Ttic。对同一历元所有可视卫星按高度角加权,生成该时刻本地参考时间与归算基准的偏差TREFSV,TREFSV的计算如式(2)所示[12-13]

TREFSV=Ttic+(ρ-r-I-T)/c+δt(s)-Δtother-ερ-Δt1 
(2)

其中,c为真空光速;引入未知参数ερ,表示含接收机伪距观测误差在内的各种残余误差总和。

服务端和各用户端设备按约定的观测周期,分别拟合TREFSV,生成代表该时段的偏差TUTCREFSVTProREFSV。与实时共视时服务端广播的观测数据相比,服务端在全视比对时,每个观测周期仅需广播一条TUTCREFSV数据,进一步简化了通信数据量。各用户端设备接收来自服务端的TUTCREFSV数据,处理方式与共视完全相同,得到本地时间与UTC(NTSC)的偏差。

根据上述流程可知,只要用户端设备可以观测到北斗卫星,并能获得对应卫星的超快速星历产品,就可以直接与UTC(NTSC)比对,用户与服务端间没有距离限制,服务性能主要与星历产品、接收机性能有关。

受伪距测量误差以及超快速星历预报产品精度限制,实时全视的比对不确定度优于2ns,更高精度的比对需要寻求更高分辨率的测量方法,例如PPP。


1.3 实时PPP原理

实时PPP是在卫星共视和全视保障了基本应用需求的基础上,随着北斗卫星的第三方星历产品逐渐成熟,为满足更高精度授时需求发展而来的。实时PPP与实时全视的基本思路完全相同,主要区别在于使用测距码与载波相位测量数据结合,代替了仅使用码伪距测量值,使用实时卫星轨道和钟差产品代替超快速预报产品。

采用双频无电离层组合进行PPP解算,基于载波相位的TREFSV计算方程用式(3)表示。

δt(s)-Δtother-ερ-Δt1 
(3)

根据不同的优化方法,可以简单地将磁场SLAM分为滤波和图优化两类。

其中,λ表示无电离层组合波长;表示载波相位模糊度。获得本地参考时间与精密卫星钟差产品系统时间的偏差,按观测周期拟合后生成TProREFSV,再接收服务端广播的对应观测周期的TUTCREFSV,生成本地参考时间与标准时间的偏差[14-17]。基于实时星历产品,目前实时PPP可以实现优于1ns不确定度的比对。


1.4 振荡器控制原理

通过实时共视/全视/PPP可以得到各用户端本地时间与标准时间UTC(NTSC)的偏差,要实现本地时间与UTC(NTSC)同步,还需要对本地振荡器进行驾驭。为能产生更稳定、准确的时间频率信号,对振荡器驾驭需遵循两项基本原则:一是使本地时间与UTC(NTSC)偏差尽可能小;二是使频率长期稳定度最优的同时,尽可能少恶化短期稳定度。结合需求分析,对振荡器的时间变化特性建模预报,比事后调整更利于目标实现。典型的振荡器随时间变化模型如式(4)所示。

(4)

其中,a表示与参考信号的初始时差;b表示与参考信号的频率差;c表示振荡器的频漂;ε表示瞬时随机变化量。利用持续比对获得的历史时差数据,结合对各类振荡器的先验经验,确定对式(4)中各项参数的拟合方法,目前拟合工具较多且较为成熟,各有适用场景,在此不再赘述。需要特别注意拟合数据的长度选择,以及根据拟合结果结合对时间偏差的预期以及振荡器类型综合考虑制定对振荡器的驾驭策略,较为典型的方案是将驾驭按阶段细分,采用不同驾驭策略,精准实施。



2 标准时间远程复现系统

为验证基于北斗卫星实时共视、全视和PPP向全球用户传递标准时间UTC(NTSC)的能力,国家授时中心建立了一套标准时间远程复现系统。基于云架构,设计扁平化的授时模式,任意节点可直接溯源至UTC(NTSC),获得本地时间与标准时间UTC(NTSC)的偏差。溯源技术支持单选实时共视、全视和PPP,或各比对结果融合;观测周期支持1min、5min、10min和自定义等多种间隔,满足各种振荡器与UTC(NTSC)同步需求。


2.1 系统设计

标准时间远程复现系统组成结构如图1所示,由标准时间产生系统、远程时间比对基准设备和标准时间复现设备三类设备组成,其中标准时间产生系统为授时系统提供时间基准。本系统的时间基准是我国的标准时间UTC(NTSC),与UTC的偏差常年保持在5ns内。


图1 标准时间远程复现系统组成图

Fig.1 Composition of UTC(NTSC) remote replicating system

远程时间比对基准设备是服务端的核心设备,用于按约定的各种观测周期、比对技术,持续产生观测数据TUTCREFSV广播给用户设备。远程时间比对基准设备是系统运行的核心,为提高可靠性,采用异地冗余互备方案,由分布多地的多台设备共同组成,通过专用光纤同步网络确保各地参考时间统一至UTC(NTSC)主钟。

标准时间复现设备属于用户端设备,通过北斗卫星的实时共视/全视/PPP等比对技术,持续获得本地参考时间与UTC(NTSC)的偏差,进而驾驭本地振荡器,产生与UTC(NTSC)同步的本地参考信号。目前,标准时间复现设备支持驯服的振荡器类型包括晶振、铷钟、铯原子钟和氢原子钟等。用户安装一台标准时间复现设备,即可获得与UTC(NTSC)同步的1PPS时间信号和10MHz频率信号,以及当前时间信号与UTC(NTSC)的偏差信息和当前时刻的时码。

为满足不同用户安装需求,设计了通过互联网、北斗短报文等多种渠道广播服务端的观测数据,其中对通过互联网传输的观测数据进行了授权和加密两层防护处理,而北斗短报文模式下仅北斗授权用户才能获得,安全性更高。

标准时间远程复现系统还支持为授权用户提供数据分析和管理服务,满足个性用户对标准时间的需求。


2.2 时延标校

作为授时系统,还需要特别关注所传递时间被用户获得的准确性,即最终用户获得时间的误差。授时误差可以分为随机误差和系统误差,其中随机误差与使用的时间比对方法、环境变化、器件等相关,一旦授时方案确定后,难以改变;系统误差具有重复性、单向性、可测性等特征,是影响授时误差的主要因素,来源主要是设备时延、电缆时延、转接器等信号在各环节传输引入的时延,在一定周期内重复可测,对系统误差的精确标校能力,影响了标准时间远程复现系统最终为用户提供授时服务的能力。

由于用户场所条件差异大,需要根据安装条件配置不同的馈线型号、长度,甚至还可能需要加入功分等器件,增加了时延的不确定性。为此,设计了时延的分段标校方案。将时延相对固定的用户端设备主机和天线进行组合标校,单独标校时延不固定的馈线,其中主机与天线的组合时延绝对标校原理如图2所示。


图2 设备时延校准原理图

Fig.2 Schematic diagram of equipment time delay calibration


被校准的标准时间复现设备与远程时间比对基准设备并址短基线安装,独立天线,预先标定馈线时延,待设备运行稳定后,使用时间间隔计数器持续测试复现设备输出1PPS与UTC(NTSC)主钟信号的时差,不少于24h。测试结果扣除测试电缆和馈线时延后,与对应测试时段标准时间复现设备输出的本地参考时间与UTC(NTSC)偏差做差,统计差值的均值即为设备的固定时延。

GNSS接收天线至标准时间复现设备主机的馈线时延,与安装环境条件密切相关,按需配置,一般在百纳秒至数百纳秒之间。电缆时延的测试方法较为通用,标定不确定度与所使用的仪器性能相关,一般情况下远优于100ps。


3 试验结果与性能分析

为了检验系统的授时性能,以及对比实时共视、全视和PPP的性能差异,采用多系统双频定时接收模块结合铷振荡器,组成标准时间复现设备,分别在零基线和千公里基线条件下,对标准时间复现设备的授时性能进行测试,每一组测试持续不少于24h。测试原理如图3所示。零基线条件下,用时间间隔计数器直接测量复现设备输出1PPS与UTC(NTSC)主钟信号的偏差;千公里基线时,以UTC(NTSC)为参考,采用事后PPP比对技术校准当地的一台氢原子钟的1PPS和10MHz信号的偏差,用作测试参考,校准后氢原子钟的频率偏差小于5×10-15,频率稳定度优于4×10-15/d,优于被测标准时间复现设备时频信号的预期能力。


图3 授时性能测试原理

Fig.3 Principle for the test of timing service performance


标准时间复现设备的输出时间与UTC(NTSC)的偏差如图4~图6所示,偏差数据的统计特征在表1列出。



图4 零基线授时偏差

Fig.4 Deviation of timing service at zero baseline



图5 基线904km授时偏差

Fig.5 Deviation of timing service at 904km baseline



图6 基线1774km实时共视比对时,授时偏差

Fig.6 Deviation of timing service at 1774km baseline based on real-time CV


表1 标准时间复现性能测试结果汇总表

Tab.1 Test results summary of UTC(NTSC) remote replicating performance



观察图4~图6曲线发现,部分时段的时间偏差存在显著的单向漂移特性,为进一步分析其原因,为铷振荡模块单独增加了保温层,发现曲线改善明显,并证实主要与铷振荡器的温度特性有关。测试时,设备处于室温环境,实验室温度约有10℃变化,引起铷振荡器频率随机漂移。因此,对于具备温控条件的用户,将设备放置在恒温环境(温度变化小于2℃),会显著改善输出信号的频率稳定性。

实测千公里基线条件下,实时PPP测量值的均方根(RMS)优于0.35ns,较共视和全视的0.8ns,测量结果随机起伏更小,有利于振荡器准确建模和预报,因此实时PPP比对时复现信号的频率长期稳定度和时间同步精度均表现更优。

此外,还可以得出以下结论:

1)基线千公里内,实时共视比对不确定度差异较小,均优于1ns,主要得益于我国境内北斗可视卫星较多,基本在8颗以上,保障了不依赖第三方产品的北斗卫星实时共视,可支持我国国境范围内为用户提供与标准时间偏差不超过5ns、RMS小于1ns的时间信号,10MHz频率信号的稳定度优于5×10-13/10000s、相对频偏小于5×10-14

2)受大环境影响,近两年不能在更远基线条件下开展基于北斗卫星实时全视的试验,仅对比了零基线和千公里基线的性能,结果显示,两种条件下测量结果24h的RMS值相当,分别为0.77ns和0.81ns,可见卫星全视的比对结果与基线长度相关度较低,可以满足更远距离的比对需求;

3)基于实时PPP比对技术,在零基线和千公里基线时,分别获得了0.2ns和0.32ns的比对A类不确定度,复现信号与UTC(NTSC)最大偏差控制在3ns以内,零基线的万秒频率稳定度进入了10-14量级,为将来进一步优化性能奠定了基础;

4)结合北斗卫星星座特点和已有试验基础,基线2000km以内,采用卫星实时共视,能实现优于2ns的比对A类不确定度。试验也证明,基于北斗卫星在基线7000km以上的欧亚比对中,依然有可共视卫星,支持开展比对,但因可用数据大幅减少而影响性能;实时全视技术因使用预报的星历与钟差,在千公里以内的短基线距离时,较共视技术的比对精度优势并不明显,更远如3000km以上时,优势才能充分显现;实时全视和PPP的比对性能与基线长度的相关性远不及实时共视技术,比对精度更高、覆盖范围更广,但依赖卫星的轨道和钟差产品,特别是当数据产品因可用性变化需要进行产品切换时,可能会引入新的不确定因素,从而影响性能,需要进一步研究优化方案。

综合对比三种实时远程比对技术,实时PPP比其他两种技术可以得到更准确的比对结果,随着实时星历钟差产品性能的进一步提升,未来还有进一步优化的空间,但是对第三方产品依赖也最高;得益于北斗卫星在中国区域的高密度覆盖,实时共视应用自由度最高,在中国区域内比对性能与卫星全视基本相当;实时全视为实时共视的有力补充,可以为一带一路沿线、海外用户等更大范围的授时应用,提供与国内性能相当的授时服务,多种比对技术的互补、融合,可以为用户提供更可靠的授时服务。


4 结论

基于我国的标准时间UTC(NTSC)和覆盖全球的北斗卫星条件,国家授时中心团队开发了一套兼容实时共视、全视和PPP三种比对技术的标准时间远程复现系统,可以为全球用户提供授时服务,授时最大偏差小于5ns,取样间隔10000s以内的时间稳定度优于1ns,频率万秒稳定度优于5×10-13,相对UTC(NTSC)的频偏小于5×10-14,是北斗授时的有力补充,目前已经在多个行业得到应用。


参考文献(略)

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论 (0)
  • 行业变局:从机械仪表到智能交互终端的跃迁全球两轮电动车市场正经历从“功能机”向“智能机”的转型浪潮。数据显示,2024年智能电动车仪表盘渗透率已突破42%,而传统LED仪表因交互单一、扩展性差等问题,难以满足以下核心需求:适老化需求:35%中老年用户反映仪表信息辨识困难智能化缺口:78%用户期待仪表盘支持手机互联与语音交互成本敏感度:厂商需在15元以内BOM成本实现功能升级在此背景下,集成语音播报与蓝牙互联的WT2605C-32N芯片方案,以“极简设计+智能交互”重构仪表盘技术生态链。技术破局:
    广州唯创电子 2025-04-11 08:59 122浏览
  • 由西门子(Siemens)生产的SIMATIC S7 PLC在SCADA 领域发挥着至关重要的作用。在众多行业中,SCADA 应用都需要与这些 PLC 进行通信。那么,有哪些高效可行的解决方案呢?宏集为您提供多种选择。传统方案:通过OPC服务器与西门子 PLC 间接通信SIMATIC S7系列的PLC是工业可编程控制器,能够实现对生产流程的实时SCADA监控,提供关于设备和流程状态的准确、最新数据。S7Comm(全称S7 Communication),也被称为工业以太网或Profinet,是西门
    宏集科技 2025-04-10 13:44 76浏览
  • 政策驱动,AVAS成新能源车安全刚需随着全球碳中和目标的推进,新能源汽车产业迎来爆发式增长。据统计,2023年中国新能源汽车渗透率已突破35%,而欧盟法规明确要求2024年后新能效车型必须配备低速提示音系统(AVAS)。在此背景下,低速报警器作为车辆主动安全的核心组件,其技术性能直接关乎行人安全与法规合规性。基于WT2003H芯片开发的AVAS解决方案,以高可靠性、强定制化能力及智能场景适配特性,正成为行业技术升级的新标杆。WT2003H方案技术亮点解析全场景音效精准触发方案通过多传感器融合技术
    广州唯创电子 2025-04-10 08:53 188浏览
  •   天空卫星健康状况监测维护管理系统:全方位解析  在航天技术迅猛发展的当下,卫星在轨运行的安全与可靠至关重要。整合多种技术,实现对卫星的实时监测、故障诊断、健康评估以及维护决策,有力保障卫星长期稳定运转。  应用案例       系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。  一、系统架构与功能模块  数据采集层  数据处理层  智能分析层  决策支持层  二、关键技术  故障诊断技术  
    华盛恒辉l58ll334744 2025-04-10 15:46 63浏览
  • 技术原理:非扫描式全局像的革新Flash激光雷达是一种纯固态激光雷达技术,其核心原理是通过面阵激光瞬时覆盖探测区域,配合高灵敏度传感器实现全局三维成像。其工作流程可分解为以下关键环节:1. 激光发射:采用二维点阵光源(如VCSEL垂直腔面发射激光器),通过光扩散器在单次脉冲中发射覆盖整个视场的面阵激光,视场角通常可达120°×75°,部分激光雷达产品可以做到120°×90°的超大视场角。不同于传统机械扫描或MEMS微振镜方案,Flash方案无需任何移动部件,直接通过电信号控制激光发射模式。2.
    robolab 2025-04-10 15:30 89浏览
  •     前几天同事问我,电压到多少伏就不安全了?考虑到这位同事的非电专业背景,我做了最极端的答复——多少伏都不安全,非专业人员别摸带电的东西。    那么,是不是这么绝对呢?我查了一下标准,奇怪的知识增加了。    标准的名字值得玩味——《电流对人和家畜的效应》,GB/T 13870.5 (IEC 60749-5)。里面对人、牛、尸体分类讨论(搞硬件的牛马一时恍惚,不知道自己算哪种)。    触电是电流造成的生理效应
    电子知识打边炉 2025-04-09 22:35 178浏览
  •   海上电磁干扰训练系统:全方位解析      海上电磁干扰训练系统,作为模拟复杂海上电磁环境、锻炼人员应对电磁干扰能力的关键技术装备,在军事、科研以及民用等诸多领域广泛应用。接下来从系统构成、功能特点、技术原理及应用场景等方面展开详细解析。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   一、系统构成   核心组件   电磁信号模拟设备:负责生成各类复杂的电磁信号,模拟海上多样
    华盛恒辉l58ll334744 2025-04-10 16:45 94浏览
  •   卫星故障预警系统软件:卫星在轨安全的智能护盾   北京华盛恒辉卫星故障预警系统软件,作为确保卫星在轨安全运行的关键利器,集成前沿的监测、诊断及预警技术,对卫星健康状况予以实时评估,提前预判潜在故障。下面将从核心功能、技术特性、应用场景以及发展走向等方面展开详尽阐述。   应用案例   目前,已有多个卫星故障预警系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星故障预警系统。这些成功案例为卫星故障预警系统的推广和应用提供了有力支持。   核心功能   实时状态监测:
    华盛恒辉l58ll334744 2025-04-09 19:49 159浏览
  • 什么是车用高效能运算(Automotive HPC)?高温条件为何是潜在威胁?作为电动车内的关键核心组件,由于Automotive HPC(CPU)具备高频高效能运算电子组件、高速传输接口以及复杂运算处理、资源分配等诸多特性,再加上各种车辆的复杂应用情境等等条件,不难发见Automotive HPC对整个平台讯号传输实时处理、系统稳定度、耐久度、兼容性与安全性将造成多大的考验。而在各种汽车使用者情境之中,「高温条件」就是你我在日常生活中必然会面临到的一种潜在威胁。不论是长时间将车辆停放在室外的高
    百佳泰测试实验室 2025-04-10 15:09 71浏览
  • 行业痛点:电动车智能化催生语音交互刚需随着全球短途出行市场爆发式增长,中国电动自行车保有量已突破3.5亿辆。新国标实施推动行业向智能化、安全化转型,传统蜂鸣器报警方式因音效单一、缺乏场景适配性等问题,难以满足用户对智能交互体验的需求。WT2003HX系列语音芯片,以高性能处理器架构与灵活开发平台,为两轮电动车提供从基础报警到智能交互的全栈语音解决方案。WT2003HX芯片技术优势深度解读1. 高品质硬件性能,重塑语音交互标准搭载32位RISC处理器,主频高达120MHz,确保复杂算法流畅运行支持
    广州唯创电子 2025-04-10 09:12 163浏览
  • 文/Leon编辑/侯煜‍关税大战一触即发,当地时间4月9日起,美国开始对中国进口商品征收总计104%的关税。对此,中国外交部回应道:中方绝不接受美方极限施压霸道霸凌,将继续采取坚决有力措施,维护自身正当权益。同时,中国对原产于美国的进口商品加征关税税率,由34%提高至84%。随后,美国总统特朗普在社交媒体宣布,对中国关税立刻提高至125%,并暂缓其他75个国家对等关税90天,在此期间适用于10%的税率。特朗普政府挑起关税大战的目的,实际上是寻求制造业回流至美国。据悉,特朗普政府此次宣布对全球18
    华尔街科技眼 2025-04-10 16:39 87浏览
  • 背景近年来,随着国家对资源、能源有效利用率的要求越来越高,对环境保护和水处理的要求也越来越严格,因此有大量的固液分离问题需要解决。真空过滤器是是由负压形成真空过滤的固液分离机械。用过滤介质把容器分为上、下两层,利用负压,悬浮液加入上腔,在压力作用下通过过滤介质进入下腔成为滤液,悬浮液中的固体颗粒吸附在过滤介质表面形成滤饼,滤液穿过过滤介质经中心轴内部排出,达到固液分离的目的。目前市面上的过滤器多分为间歇操作和连续操作两种。间歇操作的真空过滤机可过滤各种浓度的悬浮液,连续操作的真空过滤机适于过滤含
    宏集科技 2025-04-10 13:45 70浏览
  • ‌亥姆霍兹线圈‌是由两组相同的线圈组成,线圈之间的距离等于它们的半径。当电流同时流过这两个线圈时,会在它们中间形成一个几乎均匀的磁场。这种设计克服了普通线圈磁场不均匀的缺陷,能够在中心区域形成稳定、均匀的磁场‌。‌亥姆霍兹线圈的应用领域‌包括材料、电子、生物、医疗、航空航天、化学、应用物理等各个学科。由于其操作简便且能够提供极微弱的磁场直至数百高斯的磁场,亥姆霍兹线圈在各研究所、高等院校及企业中被广泛用于物质磁性或检测实验。‌亥姆霍兹线圈可以根据不同的标准进行分类‌:‌按磁场方向分类‌:‌一维亥
    锦正茂科技 2025-04-09 17:20 134浏览
  •   卫星故障预警系统:守护卫星在轨安全的 “瞭望塔”   卫星故障预警系统作为保障卫星在轨安全运行的核心技术,集成多源数据监测、智能诊断算法与预警响应机制,实时监控卫星关键系统状态,精准预判故障。下面从系统架构、技术原理、应用场景以及发展趋势这四个关键维度展开深入解析。   应用案例   目前,已有多个卫星故障预警系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星故障预警系统。这些成功案例为卫星故障预警系统的推广和应用提供了有力支持。   系统架构与组成   卫星故障
    华盛恒辉l58ll334744 2025-04-09 17:18 134浏览
  • ‌亥姆霍兹线圈‌是由两组相同的线圈组成,线圈之间的距离等于它们的半径。当电流同时流过这两个线圈时,会在它们中间形成一个几乎均匀的磁场。这种设计克服了普通线圈磁场不均匀的缺陷,能够在中心区域形成稳定、均匀的磁场‌。‌亥姆霍兹线圈的应用领域‌包括材料、电子、生物、医疗、航空航天、化学、应用物理等各个学科。由于其操作简便且能够提供极微弱的磁场直至数百高斯的磁场,亥姆霍兹线圈在各研究所、高等院校及企业中被广泛用于物质磁性或检测实验。‌‌亥姆霍兹线圈的用途非常广泛,主要包括以下几个方面‌:‌粒子物理实验‌
    锦正茂科技 2025-04-09 17:04 108浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦