【Go实现】实践GoF的23种设计模式:装饰者模式

原创 元闰子的邀请 2022-06-29 00:28

上一篇:【Go实现】实践GoF的23种设计模式:原型模式

简单的分布式应用系统(示例代码工程):https://github.com/ruanrunxue/Practice-Design-Pattern--Go-Implementation

简介

我们经常会遇到“给现有对象/模块新增功能”的场景,比如 http router 的开发场景下,除了最基础的路由功能之外,我们常常还会加上如日志、鉴权、流控等 middleware。如果你查看框架的源码,就会发现 middleware 功能的实现用的就是装饰者模式(Decorator Pattern)。

GoF 给装饰者模式的定义如下:

Decorators provide a flexible alternative to subclassing for extending functionality. Attach additional responsibilities to an object dynamically.

简单来说,装饰者模式通过组合的方式,提供了能够动态地给对象/模块扩展新功能的能力。理论上,只要没有限制,它可以一直把功能叠加下去,具有很高的灵活性。

如果写过 Java,那么一定对 I/O Stream 体系不陌生,它是装饰者模式的经典用法,客户端程序可以动态地为原始的输入输出流添加功能,比如按字符串输入输出,加入缓冲等,使得整个 I/O Stream 体系具有很高的可扩展性和灵活性。

UML 结构

场景上下文

在简单的分布式应用系统(示例代码工程)中,我们设计了 Sidecar 边车模块,它的用处主要是为了 1)方便扩展 network.Socket 的功能,如增加日志、流控等非业务功能;2)让这些附加功能对业务程序隐藏起来,也即业务程序只须关心看到 network.Socket 接口即可。

代码实现

Sidecar 的这个功能场景,很适合使用装饰者模式来实现,代码如下:

// demo/network/socket.go
package network

// 关键点1: 定义被装饰的抽象接口
// Socket 网络通信Socket接口
type Socket interface {
    // Listen 在endpoint指向地址上起监听
    Listen(endpoint Endpoint) error
    // Close 关闭监听
    Close(endpoint Endpoint)
    // Send 发送网络报文
    Send(packet *Packet) error
    // Receive 接收网络报文
    Receive(packet *Packet)
    // AddListener 增加网络报文监听者
    AddListener(listener SocketListener)
}

// 关键点2: 提供一个默认的基础实现
type socketImpl struct {
    listener SocketListener
}

func DefaultSocket() *socketImpl {
    return &socketImpl{}
}

func (s *socketImpl) Listen(endpoint Endpoint) error {
    return Instance().Listen(endpoint, s)
}
... // socketImpl的其他Socket实现方法


// demo/sidecar/flowctrl_sidecar.go
package sidecar

// 关键点3: 定义装饰器,实现被装饰的接口
// FlowCtrlSidecar HTTP接收端流控功能装饰器,自动拦截Socket接收报文,实现流控功能
type FlowCtrlSidecar struct {
  // 关键点4: 装饰器持有被装饰的抽象接口作为成员属性
    socket network.Socket
    ctx    *flowctrl.Context
}

// 关键点5: 对于需要扩展功能的方法,新增扩展功能
func (f *FlowCtrlSidecar) Receive(packet *network.Packet) {
    httpReq, ok := packet.Payload().(*http.Request)
    // 如果不是HTTP请求,则不做流控处理
    if !ok {
        f.socket.Receive(packet)
        return
    }
    // 流控后返回429 Too Many Request响应
    if !f.ctx.TryAccept() {
        httpResp := http.ResponseOfId(httpReq.ReqId()).
            AddStatusCode(http.StatusTooManyRequest).
            AddProblemDetails("enter flow ctrl state")
        f.socket.Send(network.NewPacket(packet.Dest(), packet.Src(), httpResp))
        return
    }
    f.socket.Receive(packet)
}

// 关键点6: 不需要扩展功能的方法,直接调用被装饰接口的原生方法即可
func (f *FlowCtrlSidecar) Close(endpoint network.Endpoint) {
    f.socket.Close(endpoint)
}
... // FlowCtrlSidecar的其他方法

// 关键点7: 定义装饰器的工厂方法,入参为被装饰接口
func NewFlowCtrlSidecar(socket network.Socket) *FlowCtrlSidecar {
    return &FlowCtrlSidecar{
        socket: socket,
        ctx:    flowctrl.NewContext(),
    }
}

// demo/sidecar/all_in_one_sidecar_factory.go
// 关键点8: 使用时,通过装饰器的工厂方法,把所有装饰器和被装饰者串联起来
func (a AllInOneFactory) Create() network.Socket {
    return NewAccessLogSidecar(NewFlowCtrlSidecar(network.DefaultSocket()), a.producer)
}

总结实现装饰者模式的几个关键点:

  1. 定义需要被装饰的抽象接口,后续的装饰器都是基于该接口进行扩展。
  2. 为抽象接口提供一个基础实现。
  3. 定义装饰器,并实现被装饰的抽象接口。
  4. 装饰器持有被装饰的抽象接口作为成员属性。“装饰”的意思是在原有功能的基础上扩展新功能,因此必须持有原有功能的抽象接口。
  5. 在装饰器中,对于需要扩展功能的方法,新增扩展功能。
  6. 不需要扩展功能的方法,直接调用被装饰接口的原生方法即可
  7. 为装饰器定义一个工厂方法,入参为被装饰接口。
  8. 使用时,通过装饰器的工厂方法,把所有装饰器和被装饰者串联起来。

扩展

Go 风格的实现

在 Sidecar 的场景上下文中,被装饰的 Socket 是一个相对复杂的接口,装饰器通过实现 Socket 接口来进行功能扩展,是典型的面向对象风格。

如果被装饰者是一个简单的接口/方法/函数,我们可以用更具 Go 风格的实现方式,考虑前文提到的 http router 场景。如果你使用原生的 net/http 进行 http router 开发,通常会这么实现:

func main() {
  // 注册/hello的router
    http.HandleFunc("/hello", hello)
  // 启动http服务器
    http.ListenAndServe("localhost:8080"nil)
}

// 具体的请求处理逻辑,类型是 http.HandlerFunc
func hello(w http.ResponseWriter, r *http.Request) {
    w.Write([]byte("hello, world"))
}

其中,我们通过 http.HandleFunc 来注册具体的 router, hello 是具体的请求处理方法。现在,我们想为该 http 服务器增加日志、鉴权等通用功能,那么可以把 func(w http.ResponseWriter, r *http.Request) 作为被装饰的抽象接口,通过新增日志、鉴权等装饰器完成功能扩展。

// demo/network/http/http_handle_func_decorator.go

// 关键点1: 确定被装饰接口,这里为原生的http.HandlerFunc
type HandlerFunc func(ResponseWriter, *Request)

// 关键点2: 定义装饰器类型,是一个函数类型,入参和返回值都是 http.HandlerFunc 函数
type HttpHandlerFuncDecorator func(http.HandlerFunc) http.HandlerFunc

// 关键点3: 定义装饰函数,入参为被装饰的接口和装饰器可变列表
func Decorate(h http.HandlerFunc, decorators ...HttpHandlerFuncDecorator) http.HandlerFunc {
    // 关键点4: 通过for循环遍历装饰器,完成对被装饰接口的装饰
    for _, decorator := range decorators {
        h = decorator(h)
    }
    return h
}

// 关键点5: 实现具体的装饰器
func WithBasicAuth(h http.HandlerFunc) http.HandlerFunc {
    return func(w http.ResponseWriter, r *http.Request) {
        cookie, err := r.Cookie("Auth")
        if err != nil || cookie.Value != "Pass" {
            w.WriteHeader(http.StatusForbidden)
            return
        }
        // 关键点6: 完成功能扩展之后,调用被装饰的方法,才能将所有装饰器和被装饰者串起来
        h(w, r)
    }
}

func WithLogger(h http.HandlerFunc) http.HandlerFunc {
    return func(w http.ResponseWriter, r *http.Request) {
        log.Println(r.Form)
        log.Printf("path %s", r.URL.Path)
        h(w, r)
    }
}

func hello(w http.ResponseWriter, r *http.Request) {
    w.Write([]byte("hello, world"))
}

func main() {
    // 关键点7: 通过Decorate函数完成对hello的装饰
    http.HandleFunc("/hello", Decorate(hello, WithLogger, WithBasicAuth))
    // 启动http服务器
    http.ListenAndServe("localhost:8080"nil)
}

上述的装饰者模式的实现,用到了类似于 Functional Options 的技巧,也是巧妙利用了 Go 的函数式编程的特点,总结下来有如下几个关键点:

  1. 确定被装饰的接口,上述例子为 http.HandlerFunc
  2. 定义装饰器类型,是一个函数类型,入参和返回值都是被装饰接口,上述例子为 func(http.HandlerFunc) http.HandlerFunc
  3. 定义装饰函数,入参为被装饰的接口和装饰器可变列表,上述例子为 Decorate 方法。
  4. 在装饰方法中,通过for循环遍历装饰器,完成对被装饰接口的装饰。这里是用来类似 Functional Options的技巧,一定要注意装饰器的顺序
  5. 实现具体的装饰器,上述例子为 WithBasicAuth 和 WithLogger 函数。
  6. 在装饰器中,完成功能扩展之后,记得调用被装饰者的接口,这样才能将所有装饰器和被装饰者串起来。
  7. 在使用时,通过装饰函数完成对被装饰者的装饰,上述例子为 Decorate(hello, WithLogger, WithBasicAuth)

Go 标准库中的装饰者模式

在 Go 标准库中,也有一个运用了装饰者模式的模块,就是 context,其中关键的接口如下:

package context

// 被装饰接口
type Context interface {
    Deadline() (deadline time.Time, ok bool)
    Done() <-chan struct{}
    Err() error
    Value(key any) any
}

// cancel装饰器
type cancelCtx struct {
    Context // 被装饰接口
    mu       sync.Mutex
    done     atomic.Value
    children map[canceler]struct{}=
    err      error
}
// cancel装饰器的工厂方法
func WithCancel(parent Context) (ctx Context, cancel CancelFunc) {
    // ...  
    c := newCancelCtx(parent)
    propagateCancel(parent, &c)
    return &c, func() { c.cancel(true, Canceled) }
}

// timer装饰器
type timerCtx struct {
    cancelCtx // 被装饰接口
    timer *time.Timer

    deadline time.Time
}
// timer装饰器的工厂方法
func WithDeadline(parent Context, d time.Time) (Context, CancelFunc) {
  // ...
    c := &timerCtx{
        cancelCtx: newCancelCtx(parent),
        deadline:  d,
    }
    // ...
  return c, func() { c.cancel(true, Canceled) }
}
// timer装饰器的工厂方法
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc) {
    return WithDeadline(parent, time.Now().Add(timeout))
}

// value装饰器
type valueCtx struct {
    Context // 被装饰接口
    key, val any
}
// value装饰器的工厂方法
func WithValue(parent Context, key, val any) Context {
    if parent == nil {
        panic("cannot create context from nil parent")
    }
  // ...
    return &valueCtx{parent, key, val}
}

使用时,可以这样:

// 使用时,可以这样
func main() {
    ctx := context.Background()
    ctx = context.WithValue(ctx, "key1""value1")
    ctx, _ = context.WithTimeout(ctx, time.Duration(1))
    ctx = context.WithValue(ctx, "key2""value2")
}

不管是 UML 结构,还是使用方法,context 模块都与传统的装饰者模式有一定出入,但也不妨碍 context 是装饰者模式的典型运用。还是那句话,学习设计模式,不能只记住它的结构,而是学习其中的动机和原理

典型使用场景

  • I/O 流,比如为原始的 I/O 流增加缓冲、压缩等功能。
  • Http Router,比如为基础的 Http Router 能力增加日志、鉴权、Cookie等功能。
  • ......

优缺点

优点

  1. 遵循开闭原则,能够在不修改老代码的情况下扩展新功能。
  2. 可以用多个装饰器把多个功能组合起来,理论上可以无限组合。

缺点

  1. 一定要注意装饰器装饰的顺序,否则容易出现不在预期内的行为。
  2. 当装饰器越来越多之后,系统也会变得复杂。

与其他模式的关联

装饰者模式和代理模式具有很高的相似性,但是两种所强调的点不一样。前者强调的是为本体对象添加新的功能;后者强调的是对本体对象的访问控制

装饰者模式和适配器模式的区别是,前者只会扩展功能而不会修改接口;后者则会修改接口。

文章配图

可以在 用Keynote画出手绘风格的配图 中找到文章的绘图方法。

参考

[1] 【Go实现】实践GoF的23种设计模式:SOLID原则, 元闰子

[2] 【Go实现】实践GoF的23种设计模式:建造者模式, 元闰子

[3] Design Patterns, Chapter 4. Structural Patterns, GoF

[4] 装饰模式, refactoringguru.cn

[5] Golang Decorator Pattern, Henry Du

更多文章请关注微信公众号:元闰子的邀请


评论
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 120浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 84浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 101浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 98浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 89浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 169浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 181浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 49浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 89浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 71浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 171浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 75浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦