原创聚合|Linux阅码场原创精华文章汇总与征稿

原创 Linux阅码场 2022-06-28 08:00
阅码场近期征稿选题


性能优化案例:

1 内存

2 功耗

3 调度

4 存储

5 FWK

安全类:

1 安全启动和远程证明原理

2 tee原理以及应用分析

3 权限最小化管理以及沙箱技术

4 mac技术:selinux原理

5 ids入侵检测技术(包括rootkit检测等)结合AI技术

6 IMA和dim kernel原理

7 隐私计算

8 DRM



阅码场用户选题:


1 内核对cache/tlb的配置刷新及刷新时机
2 深入理解Bcache
SMP和超线程
 cache一致性协议与False Sharing
处理器微架构及IPCCPI
NUMA
MMUIOMMU技术
wayland,DRM,hugetlb,cgroupbcache,__attribute__,tee, gdb,rtos,进程调度,shell编程,wayland,mountautosuspend,RCU,CFI,中断。
(以上为用户在后台提交的关键词,欢迎投稿)


原创精华文章


Linux glibc 内存站岗问题及解决方法

持续更新,敬请期待!(最后更新日期2022.06.14)


Linux学习方法:

宋宝华:迭代螺旋法——关于Linux学习方法的血泪建议
宋宝华:纪念金庸先生——程序员的武侠世界

甄建勇:芯片架构方法学

如何阅读Linux内核的源码

总是选择难的那条路




Linux任督二脉之进程管理


郭健:Linux进程调度技术的前世今生之“前世”

郭健:Linux进程调度技术的前世今生之“今生”
深入理解Linux内核进程上下文切换

漫话Linux之“躺平”: IDLE 子系统

宋宝华:是谁关闭了Linux抢占,而抢占又关闭了谁?

同样学习Linux, 为何差别这么大? - 论打通Linux进程和内存管理任督二脉

宋宝华: 僵尸进程的成因以及僵尸可以被“杀死”吗?

宋宝华:关于Linux进程优先级数字混乱的彻底澄清

有关微内核OS史上最透彻一篇 - 写于华为鸿蒙发布一周之际

被神话的Linux, 一文带你看清Linux在多核可扩展性设计上的不足

fork三部曲:Linux fork那些隐藏的开销

fork三部曲:Unix/Linux fork前传

fork三部曲:Fork三部曲之clone的诞生

理解Linux内核抢占模型(最透彻一篇)

大碰撞!当Linux多线程遭遇Linux多进程

宋宝华:在实时操作系统里面随便怎么写代码都能硬实时吗?

Linux中父进程为何要苦苦地知道子进程的死亡原因?

定位并行应用程序中的可伸缩性问题(最透彻一篇)

宋宝华:谈一谈Linux让实时/高性能任务独占CPU的事

彭伟林:Linux schedule 之 Cgroupnew

彭伟林:Linux schedule 调度算法new


Linux任督二脉之内存管理


宋宝华:CPU是如何访问到内存的?--MMU最基本原理

宋宝华:那些年你误会的Linux DMA(关于Linux DMA ZONE和API最透彻的一篇)

围绕HugeTLB的极致优化

Linux glibc 内存站岗问题及解决方法

宋宝华:网上坑爹的Linux资料汇总之内存管理

宋宝华:swappiness=0究竟意味着什么?

宋宝华:kvmalloc ——倚天剑屠龙刀两大神器合体?

宋牧春:多图详解Linux内存分配器slub

宋牧春:Linux内核slab内存的越界检查——SLUB_DEBUG
宋宝华:世上最好的共享内存(Linux共享内存最透彻的一篇)

宋宝华:论Linux的页迁移(Page Migration)完整版

郭健:Linux内存逆向映射(reverse mapping)技术的前世今生
谢宝友:深入理解Linux RCU之一——从硬件说起

谢宝友:深入理解Linux RCU:从硬件说起之内存屏障

廖威雄: 学习Linux必备的硬件基础一网打尽

为什么内核访问用户数据之前,要做access_ok?
Linux的page cache使用情况/命中率查看和操控

Linux内核如何私闯进程地址空间并修改进程内存

内存泄漏(增长)火焰图

宋宝华:Linux为什么一定要copy_from_user ?

linux内核写时复制机制源代码解读

深入剖析Linux内核反向映射机制

宋宝华:深入理解cache对写好代码至关重要(上)

用户态进程如何得到虚拟地址对应的物理地址?

内存管理的另辟蹊径 - 腾讯云虚拟化开源团队为内核引入全新虚拟文件系统(dmemfs)

宋宝华:Linux内核中用GFP_ATOMIC申请内存究竟意味着什么?

宋宝华:ARM64 Linux内核页表的块映射

程磊:Linux OOM 基本原理解析(new


系统调试调优


推荐Linux性能分析的一篇论文和两本书

宋宝华:深入理解cache对写好代码至关重要(上)

宋宝华:关于Ftrace的一个完整案例

(重磅原创)冬之焱: 谈谈Linux内核的栈回溯与妙用

阿里杨勇:浅谈 Linux 高负载的系统化分析

Linux TraceEvent - 我见过的史上最长宏定义

大神如何不择手段,最快最精准打击Linux网络问题?

揭露内核黑科技 - 热补丁技术真容

Linux pstore 实现自动“抓捕”内核崩溃日志

解决Linux内核问题实用技巧之-dev/mem的新玩法

吴章金:如何创建一个*可执行*的共享库

吴章金: 深度剖析 Linux共享库的“位置无关”实现原理

吴章金:通过操作 Section 为 Linux ELF 程序新增数据

吴章金:实例解析 Linux C 语言程序之变量类型

解决Linux内核问题实用技巧之 - Crash工具结合/dev/mem任意修改内存

解决Linux内核问题实用技巧之-dev/mem的新玩法

宋宝华:火焰图:全局视野的Linux性能剖析

宋宝华:当Linux内核遭遇鲨鱼—kernelshark

孟冉: Linux火焰图的数据流程分析

宋宝华:用off-cpu火焰图进行Linux性能分析

宋宝华:用eBPF/bcc分析系统性能的一个简单案例

朱辉(茶水):Linux Kernel iowait 时间的代码原理

朴英敏:用crash工具分析Linux内核死锁的一次实战

宋宝华:Kernel Oops和Panic是一回事吗?

廖威雄: 利用__attribute__((section()))构建初始化函数表与Linux内核init的实现

宋宝华:关于Linux编译优化几个必须掌握的姿势

燕青:Unixbench 测试套件缺陷深度分析

宋宝华:一个简单的python脚本画出Linux程序/库依赖图

宋宝华:一个简单的python脚本看透Linux程序对库的依赖

Linux 系统性能评测基准系统配置及其原理

精品译文系列:Linux多线程应用性能分析

Linux 系统性能评测基准系统配置及其原理

李浩: 再谈 volatile 关键字

闻茂泉:系统性能监控与分析的工程化实践之路(new

彭伟林:Ftrace Hook (Linux内核热补丁) 详解new

彭伟林:BPF内核实现详解new

李棒:深入理解内存泄漏检查kmemleaknew

彭伟林:手把手入门火焰图(new

李棒:浅谈 ARM64 基于硬件 tag 的 KASAN(new

彭伟林:使用ftrace分析函数性能(new

彭伟林:Linux ftrace 1.3、tracer (function、function_graph、irq_off)(new

徐庆伟:Linux Tracing System浅析和eBPF开发经验分享(new

宋赛:一文读懂eBPF的前世今生(new

彭伟林:深入理解Linux ftrace 之 trace event(new

龙城赤子:一个内核oops问题的分析及解决new

张彦飞:深入理解Linux网络之网络性能优化建议(new


文件系统和IO


宋宝华:Linux文件读写(BIO)波澜壮阔的一生

刘正元: Linux 通用块层之IO合并

黄伟亮:ext4文件系统之裸数据的分析实践

黄伟亮:探秘Linux的块设备和根

打通IO栈:一次编译服务器性能优化实战

吴锦华/明鑫: 用户态文件系统(FUSE)框架分析和实战

实例演绎Unix/Linux的"一切皆文件"思想

300来行代码带你实现一个能跑的最小Linux文件系统

宋宝华:论一切都是文件之匿名inode


设备驱动


宋宝华:让天堂的归天堂,让尘土的归尘土——谈Linux的总线、设备、驱动模型

宋宝华:Linux设备驱动框架里的设计模式之——模板方法(Template Method)

桃李春风一杯酒,江湖夜雨十年灯 - 老兵夜话DPDK

Linux Tcp 内核协议栈学习三种武器 之 Packet Drill

宋宝华:Linux内核编程广泛使用的前向声明(Forward Declaration)

宋宝华:Linux设备与驱动的手动解绑与手动绑定

用Linux内核的瑞士军刀-eBPF实现socket转发offload

宋牧春:Linux设备树文件结构与解析深度分析(1)

宋牧春:Linux设备树文件结构与解析深度分析(2)
何晔:当ZYNQ遇到Linux Userspace I/O(UIO)

邵国际: C 语言对象化设计实例 —— 命令解析器

宋宝华:关于ARM Linux原子操作的实现

罗玉平:关于ARM Linux原子操作的底层支持

Linux的中断可以嵌套吗?

ARM Linux的中断服务程序工作在ARM的IRQ模式吗?

宋宝华:几个人一起抢spinlock,到底谁先抢到?

宋宝华:为什么Linux内核常常用unsigned long来代替指针

孙雷: 虚拟化之——virtio-net基础篇

Jack:深入理解VFIO驱动框架(new

尹忠凯:dma-buf学习分享(new


用户态编程


一文读懂Linux进程、进程组、会话、僵尸

骆小刚:Linux后台服务启动方式systemd、daemon、nohup大比拼

郝健:Linux下服务程序启动管理方式的分析与总结

宋宝华:一图理解终端、会话、 进程组、进程关系

宋宝华:让Linux的段错误(segmentation fault)不再是一个错误


云和虚拟化


宋宝华:Docker 最初的2小时(Docker从入门到入门)

KVM最初的2小时——KVM从入门到放弃(修订版)

Leo Hou:深入理解SR-IOV和IO虚拟化(new

黄鹏:报文ACL算法之HyperSplit Tree建树性能优化new

黄鹏:DPDK代码级调优之__rte_cache_alignednew


Linux内核月报


Linux阅码场 - Linux内核月报(2020年06月)

Linux阅码场 - Linux内核月报(2020年07月)

Linux阅码场 - Linux内核月报(2020年08月)

Linux阅码场 - Linux内核月报(2020年09月)

Linux阅码场 - Linux内核月报(2020年10月)


Linuxer 人生


宋宝华:公元1024年Linux内核的尘封往事

经历≠经验,码农如何工作10年依然是菜鸟?

陈莉君教授: 回望踏入Linux内核之旅

魏永明:MiniGUI的涅槃重生之路

谢宝友: 手把手教你给Linux内核发patch


ARM 架构


周贺贺:深入学起Cache系列 3 : 多核多Cluster多系统之间的缓存一致性(new

周贺贺:深入学习Cache系列 2: Cache是如何工作的?概念以及工作过程(new

周贺贺:深入学习Cache系列 1: 带着几个疑问,从Cache的应用场景学起(new

周贺贺:armv8/armv9不同特权程序之间的跳转模型(new

周贺贺:armv8/armv9中断系列详解-中断示例展示(new

周贺贺:armv8-armv9中断系列详解-硬件基础篇(new

周贺贺:armv8-armv9 MMU深度学习(new

周贺贺:一文了解Linux Kernel中密码学算法的设计与应用(new

周贺贺:ATF快速扫盲(Quick Start)(new

周贺贺:Linux Kernel中非对称密码算法的实现(new

实时系统与性能


王顺刚:xenomai3.1+linux构建linux实时操作系统-基于X86_64和armnew

王顺刚:xenomai内核解析之嵌入式实时linux概述new

彭伟林:Linux实时化与硬实时RTOS综述new

邓世强:浅谈Linux内核的实时性优化(new

王顺刚:xenomai内核解析--双核系统调用(一)(new

王顺刚:xenomai内核解析--双核系统调用(二)--应用如何区分xenomai/linux系统调用或服务(new

王顺刚:xenomai内存池管理(new

王顺刚:有利于提高xenomai 实时性的一些配置建议(new


系统信息安全


彭伟林:CFI/CFG 安全防护原理详解(new

书意:sel4源码解析(二) - CSpace(new

书意:sel4源码解析(一) - sel4内核对象(new


芯片与系统架构


甄建勇:CXL:为缓存一致性而生的新一代总线

zheng Li:从多核到众核处理器


平台与硬件


彭伟林:深入理解EtherCATnew

Leo:机械按键扫描——数字逻辑有限状态机思想在软件中的实现(new

程晨:Arduino Portenta X8新开发模式支持Docker(new






扫描/识别二维码关注"Linux阅码场" 

如果您觉得不错,请转发转发转发!

或者随手点个“在看”吧~

Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 44浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 170浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 116浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦