惠斯登电桥传感器电路设计技巧,了解一下?

原创 亚德诺半导体 2022-06-25 11:00
仪表放大器可以调理传感器生成的电信号,从而实现这些信号的数字化、存储或将其用于控制信号一般较小,因此,放大器可能需要配置为高增益。另外,信号可能会叠加大共模电压,也可能叠加较大直流失调电压。精密仪表放大器可以提供高增益,选择性地放大两个输入电压之间的差异,同时抑制两个输入中共有的信号。


惠斯登电桥是这种情况的经典例子,但像生物传感器一类的原电池具有类似的特性。电桥输出信号为差分信号,因此,仪表放大器是高精度测量的优选。理想情况下,无负载电桥输出为零,但仅当所有四个电阻均完全相同时,这种情况方为真。假如有一个以分立式电阻构建的电桥,如图 1 所示。最差情况差分失调 VOS

其中,VEX 为电桥激励电压,TOL为电阻容差(单位为百分比)。

图 1 惠斯登电桥失调


例如,在各元件的容差均为 0.1%且激励电压为 5 V 时,差分失调可以高达±5 mV。如果需要 400 的增益来实现所需电桥灵敏度,则放大器输出端的失调变成±2 V。假设放大器由同一电源驱动,并且其输出可以轨到轨摆动,则仅电桥失调就可能消耗掉 80%以上的输出摆幅。在行业要求电源电压越来越小的趋势下,这个问题只会变得更加糟糕。

传统的三运放仪表放大器架构(如图 2 所示)有一个差分增益级,其后为一个减法器,用于移除共模电压。增益施加于第一级,因此,失调放大的倍数与目标信号相同。因此,将其移除的方法是在参考(REF)端施加反电压。这种方法的主要不足在于,如果放大器的第一级已经饱和,则调节 REF 上的电压并不能更正失调。克服这点不足的几种方法包括:
  • 根据具体情况,以外部电阻对电桥分流,但对于自动化生产来说,这是不现实的,而且在出厂后是无法调整的
  • 减少第一级增益,通过微调 REF 上的电压来移除失调,并再添一个放大器电路以实现所需增益
  • 减少第一级增益,以高分辨率 ADC 完成数字化输出,并在软件中移除失调


后两种选项还需要考虑最差情况下与原始失调值的偏差,从而进一步减少第一级的最大增益。这些解决方案并不理想,因为它们需要额外的电源、电路板空间或成本,来达到高 CMRR 和低噪声的目标。另外,交流耦合并不是测量直流或超慢移动信号的一种选择。

图 2 三运放仪表放大器拓扑结构


间接电流反馈(ICF)仪表放大器(如AD8237 和 AD8420可在放大之前移除失调。图 3 显示ICF拓扑结构原理图。

图 3 间接电流反馈仪表放大器拓扑结构


该仪表放大器的传递函数在形式上与经典三运放拓扑结构的传递函数相同,其计算公式为

由于输入之间的电压等于反馈(FB)与参考(REF)端子之间的电压时,放大器的反馈要求可得到满足,因此,我们可将该公式重写为

这意味着,引入一个等于反馈和参考端子之间失调的电压,即使在存在大输入失调的情况下,也可将输出调整为零伏特。如图 4 所示,该调整可以通过以下方法实现:从一个简单的电压源(如低成本 DAC)或者来自嵌入式微控制器的滤波 PWM 信号,通过电阻 RA 将一个小电流注入反馈节点。

图 4 带失调移除功能的高增益电桥电路


设计步骤

等式(3),R1与 R2 之比将增益设为:

设计师必须确定电阻值。较大电阻值可降低功耗和输出负载;较小值可限制FB输入偏置电流和输入阻抗误差。如果 R1 和 R2 的并联组合大于约30 kΩ,则电阻开始引起噪声。表1显示了一些建议值。

表 1 各种增益的推荐电阻(1%电阻)
为了简化 RA值的查找过程,假设采用双电源运行模式,有一个接地 REF 端子和一个已知的双极性调整电压 VA。这种情况下的输出电压可通过以下公式计算:

注意,从VA至输出的增益为反相。VA 的增加会使输出电压降低,比值为R2和 RA之比。此比值下,可以针对给定的输入失调,使调整范围达到最大。由于调整范围指向增益之前的放大器输入,因此,即使在低分辨率源的情况下,也可实施微调。由于 RA 一般都比 R1大得多,因此,我们可以得到等式(5)的近似值:

为了找到一个 RA值以允许最大失调调整范围 VIN(MAX),在给定调整电压范围 VA(MAX)的情况下,使VOUT = 0 ,求 RA,结果得到

其中,VIN(MAX)为传感器预期的最大失调。等式(5)同时显示,调整电路的插入会修改从输入到输出的增益。即使如此,其影响一般也很小,增益可以重新计算为:

一般地,对于单电源电桥调理应用,参考端的电压应大于信号地。如果电桥输出可以在正负间摆动,情况尤其如此。如果基准电压源由一个低阻抗源(如分阻器和缓冲器)驱动至电压 VREF,如图 5 所示,则等式(5)变为:

如果相对于原始等式中的VREF取 VOUT 和VA ,则可得到相同的结果。VA(MAX) – VREF 也应替换等式(7)中的 VA(MAX)
设计示例

假设有一个单电源电桥放大器,如图 4 所示,其中,用 3.3 V 电压来激励电桥并驱动放大器。满量程电桥输出为±15 mV,失调可能处于±25m V 的范围。为了取得所需灵敏度,放大器增益需为 100,ADC 的输入范围为 0 V 至 3.3 V。由于电桥的输出可以为正,也可以为负,因此,其输出指向中间电源或 1.65 V。只需通过施加 100 的增益,失调本身即会强制使放大器输 出处于–0.85 V 至+4.15 V 的范围内,这超过了电源轨。

这个问题可通过图 5 所示的电路来解决。电桥放大器A1 是一个像AD8237 一样的ICF仪表放大器。放大器A2,带R4 和R5,将 A1 的零电平输出设为中间电源。AD56018 位DAC对输出进行调整,通过RA使电桥失调为 0。然后,放大器的输出由AD7091微功耗 12 位ADC数字化。

图 5 针对单电源工作模式而修改的失调移除电路


从表1可以发现,增益为101时, R1和R2 需为1 kΩ和100 kΩ。电路包括一个可以在 0 V 至 3.3 V 范围内摆动,或者在 1.65V 基准电压左右摆动±1.65 V。为了计算 RA 的值,我们使用等式 (6)。其中,VA(MAX) = 1.65 V 且 VIN(MAX) = 0.025 V, RA = 65.347 kΩ。当电阻容差为 1%时,最接近的值为 64.9 kΩ。然而,这没有为源精度和温度变化导致的误差留下任何裕量,因此,我们选择一个常见的 49.9 kΩ 低成本电阻,这样做的代价是调整分辨率降低了,结果导致略大的调整后失调。

从等式(7),我们可以算出额定增益值为 103。如果设计师希望得到接近目标值 100 的增益值,最简单的办法是使 R2 的值降低 3%左右,至 97.6 kΩ,结果对 RA 的值的影响非常小。在新的条件下,额定增益为 100.6。

由于DAC可以摆动±1.65 V,因此,总失调调整范围可通过由RA 以及R1和R2的并联组合形成的分压器给定,其计算方法如下:

在±25-mV 最大电桥失调范围内,±32.1-mV 的调整范围可提供 28%的额外调整裕量。对于 8 位 DAC,调整步长为
对于 250-µV 调整分辨率,输出端的最大残余失调为 12.5 mV。

对于采样率为 1 MSPS 的 AD7091,这些值为 51 Ω 和 4.7 nF。在以较低速率采样时,可以使用较大的电阻或电容组合,以进一步减少噪声和混叠效应。

该电路的另一个优势在于,可以在生产或安装时完成电桥失调调整。如果环境条件、传感器迟滞或长期漂移对失调值有影响,则可重新调整电路。

受其真轨到轨输入影响,AD8237 最适合采用超低电源电压的电桥应用。对于要求较高电源电压的传统工业应用,AD8420 不失为一款良好的替代器件。该 ICF 仪表放大器采用 2.7 V 至 36 V 电源供电,功耗低 60%。

表 2 是对两款仪表放大器进行了比较。都使用了最小和最大规格。有关更多详情和最新信息,请参见产品数据手册。

查看往期内容↓↓↓
亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 227浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 122浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 111浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 127浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 172浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 211浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 81浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 78浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 72浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 145浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦