MCU复位电路知多少?

嵌入式大杂烩 2022-06-23 21:30

大家好,我是杂烩君。

什么是复位电路?

复位电路在单片机小系统中很常见,今天我们就探讨下单片机阻容复位电路的构成、特点和改进方法,本文内容选自龙顺宇老师的新书 《深入浅出STC8增强型51单片机进阶攻略》

如果朋友们学习过《数字电子技术》这门课程的相关内容就肯定知道触发器和时序逻辑电路章节中必学的 初态次态 问题,简单来说就是需要明确电路之前的状态才能推导出后面的状态,由此可见,在数字电路(特别是时序电路)中一个已知的初始状态有多么重要。

我们学习的单片机其实就是个数字/模拟的混合系统,很多片内资源和相关寄存器都需要一个默认的起始状态。

我们现在讲的“复位”,其作用就是通过相关电路产生“复位信号”让单片机能在上电后或者运行中恢复到默认的起始状态。

“复位”动作之后单片机会产生一系列的重置操作,例如I/O口默认的模式和状态、相关寄存器的默认取值、所有标志位的状态重置、通信/定时相关的数据内容设定等等。

由此可见, 复位的意义就是让单片机相关单元进行初始重置且程序从内存起始地址重新执行

要让单片机正确复位就需要在RST引脚(等同于RESET引脚)上产生符合复位要求的有效信号,有的单片机需要高电平复位信号,有的则需要低电平复位信号。

我们以经典51单片机高电平复位为例,单片机正常运行时RST引脚应保持低电平,当需要复位时应拉高RST引脚的电平,并维持“系统时钟源、内部电路单元稳定周期+2个机器周期”的时间长度( 为保证有效复位,复位信号应持续20至200ms为宜 )。

我们知道,在12T型单片机中,1个机器周期等于12个时钟周期,时钟周期其实就是振荡周期,比如晶振频率是12M,振荡周期就是1/12000000秒,由此可见,在设计具体复位电路时需要考虑单片机工作时钟频率后再去匹配复位电路的相关参数。

在早期的51单片机产品中,复位信号一般是由外部复位电路产生,所以很多经典的单片机原理类书籍将复位电路称作最小系统的必要组成,随着单片机技术的不断发展,很多单片机不再单独拿出一个RST引脚仅做复位之用,而是在晶圆设计时集成了 片内上电复位POR(Power On Reset)电路 ,很多单片机就都具备片上POR电路,POR电路在芯片上电后会产生一个内部复位脉冲并使器件保持静态,直至电源电压达到稳定阈值后再释放复位信号。

这样一来,用户就可以省略外部复位电路将RST引脚闲置或者当做普通I/O使用。

如果读者朋友们实际应用的单片机不具备片上POR电路也没事,我们可以搭建符合复位要求的外置电路产生复位信号。

一般来说,单片机复位电路主要有四种类型:微分型复位电路积分型复位电路比较器型复位电路看门狗型复位电路 。接下来小宇老师就拿出相对简单的微分和积分型电路进行讲解,让读者朋友们能有一个直观的感受。

常见的阻容式微分复位电路如图1(a)所示,电路中的“Reset”电气网络连接至单片机“RST”引脚。该电路上电后的波形如图(b),其波形在上电后先是高电平,经过100ms后跌落到了1V以下最终保持低电平状态,我们常将其称为“高电平”复位电路。

(a)(b)

图1 微分型高电平复位电路原理图

分析微分复位电路,该电路的组成十分简单,其核心实现仅有1个电阻和1个电容组成,外加的S1按键主要实现手动复位功能,当S1按下时“Reset”电气网络被强制拉高实现复位。

在设计该电路时一定要先根据单片机工作的时钟频率去考虑阻容的取值,若系统选用12MHz石英晶振,则1个机器周期就是1us,复位信号的脉冲宽度最小也要2us以上,但是真正设计时最好不要贴近理论值去构造电路,复位信号脉冲宽度最好是20至200ms为宜。当晶振频率大于或等于12MHz时,常见取值C1为10uF,R1为10k。

当系统上电时C1相当于通路,“Reset”电气网络上电瞬间为高电平,随着R1不断泄放C1的电荷,“Reset”电气网络的电压逐渐降低,最终降到低电平区间。在放电的过程中“Reset”电气网络的高电平持续了100ms左右才跌落到1V以下,这远大于2个机器周期的复位时间要求,即复位有效。

若将图2中的电阻R1和电容C1互换位置就可以变成阻容式积分复位电路,电路原理图如图2(a)所示。该电路上电后的波形如图(b)所示,其波形在上电后先是低电平,然后经过50ms左右就超过了1.6V并继续上升,最终保持在高电平电压区间,我们常将该电路称为“低电平”复位电路。

当系统上电时C1相当于通路,故而“Reset”电气网络上电瞬间为低电平,随着电源通过R1不断的向C1充电,“Reset”电气网络的电位逐渐抬升并最终保持高电平。外加的S1按键主要实现手动复位功能,当S1按下时“Reset”电气网络被强制拉低实现复位。

(a)(b)

图2 积分型低电平复位电路原理图

阻容式复位电路非常简单,成本也很低,但是可靠性如何呢?可能有的读者朋友会说:市面上的开发板都用这个电路,我在实验室也用这个电路,从来没遇到过问题,而且这种经典电路每本书都这么讲的,你敢说不可靠?

小宇老师得站出来说:这电路确实简单,但可靠性确实不高。首先来说,阻容器件本身存在器件误差,误差会直接导致RC时间常数和充放电时间的差异,批量制造时难以保证产品的一致性。其次,阻容器件存在老化现象和温漂问题,在长期使用或者严苛温度环境中容易造成较大误差导致失效。

最后,简单的阻容复位电路会有电容的迟滞充放电问题,导致复位信号可能不满足复位电平阈值要求,且面对来自电源的波动或者快速开关机情况会出现无法复位的问题。

朋友们可能会说,器件参数误差、老化和温漂在一般产品中都可以接受,一致性问题也没有那么高要求,本着“能用就行”的原则,这个电路也凑合用吧!也不是不行,但是可以稍微改进下,且看小宇老师做个实验。

以图1(a)所示的阻容式微分复位电路为例,若将电源周期性通断,其复位波形就不再完美了,实际波形如图3(a)所示,复位波形由于电容的缓慢放电原因出现了下降迟缓且无法到达低电平阈值的问题(也就是复位电压“下不去”的情况),这种复位信号就不能保证单片机系统的有效复位,若工业控制有关的板卡遇到电源波动出现无法复位的情况,无疑是危险的。

若将微分复位电路按图3(b)改进,在电阻R1的两端并联个D1,再次将电源周期性通断,复位波形就会变成如图3(c)所示的波形。从波形上看,电路改造后复位波形得到了明显的改善,图中波形下降迅速且可以下降到低电平阈值以下,不会出现频繁上电时复位电压“下不去”的情况。

(a)(b)(c)

图3 微分型高电平不可靠复位及优化实验

这个“不起眼”的D1为电容C1在掉电情况下提供了一条迅速泄放电荷的通道,这样一来就可以保证在电源频繁波动或者周期性上电情况下的正常复位。有的朋友可能要说了,这个复位波形看起来还是很“怪异”啊!虽说是高电平复位波形,但是看起来和“毛刺”一样,就不能通过什么电路把复位信号搞成类似于高低电平的波形样式吗?

当然也是可以的,我们再把电路优化一次。添加三极管和二极管进去,最终搭建出一种阈值电压比较型高电平复位电路如图4(a)所示。电路的目的就是构造一个“复位阈值电压比较器”,电路中的稳压二极管D1(实际选用3.3V稳压管)和开关二极管D2(实际选用1N4148,导通压降为0.6V左右)决定了复位信号的电平阈值,大致就是3.3V+0.6V=3.9V左右(朋友们也可以更替D1的稳压参数构成更多复位阈值)。

电路中的三极管Q1及外围电路构成了一个简单的比较器电路,当电源波动的时候也可以有效的根据阈值比较完成复位动作。R2的大小可以改变输出信号的驱动能力,R1和C2一起决定了复位延时的长度,C1是为了抑制和旁路电源中的高频噪声。该电路上电后的复位波形如图4(b)所示,这样的波形总算是“漂亮”了。

(a)(b)

图4 一种阈值电压比较型高电平复位电路原理图

虽说图4(b)所示波形的高电平末端有个向上的小“凸起”,但这并不影响复位信号的有效性,因为复位电压只要在1.6V以上就满足高电平复位系列单片机的复位要求了,如果有朋友和小宇老师一样是个“强迫症”,那您也可以微调R1和C2的取值去优化波形。

基于图4(a)所示的高电平复位电路,我们也可以稍加变形做成如图5(a)所示的“低电平复位电路”,该电路适用于低电平复位的单片机。该电路上电后的复位波形如图5(b)所示,该波形相当于图4(b)的取反波形。

(a)(b)

图5 一种阈值电压比较型低电平复位电路原理图

由此可见,小电路也有很多讲究。此处的改进只是抛砖引玉,朋友们别被“抛出去的砖”砸晕了,复位电路还存在很多改进电路和一些实际问题,希望读者朋友们可以自行延展,单片机复位端口处还可并联0.01至0.1uF的瓷片电容,以抑制电源高频噪声干扰或配置施密特触发器电路,进一步的提高单片机对串入噪声的抑制。

可能有的朋友还是不满意这种RC充放电电路产生的复位波形,能不能有什么电路或者器件使用简单又能产生类似方波一样的复位波形呢?答案是肯定的,想要高可靠复位单元可以选择专用的复位监控芯片。如飞利浦半导体、美信半导体公司均有此类产品,这些芯片的体积小、功耗低、门槛电压可选。

集成度的提高使抗干扰能力和温度适应性都得到了大幅提高,可以保证系统在不同的异常条件下进行可靠的复位。其原理其实是通过确定的电压阈值启动复位操作,同时排除瞬间干扰的影响,又有防止单片机在电源启动和关闭期间的误操作效果,以保证程序的正常执行。

我们以美信公司生产的MAX810这款高电平复位电路专用芯片为例,搭建如图6(a)所示电路,上电后测量“Reset”电气网络可以得到如图6(b)所示波形,这个波形就堪称“完美”了。

(a)(b)

图6 专用复位芯片MAX810电路及复位波形

常见的低电平复位电路有MAX705、MAX706、MAX809、MAX811等器件。高电平复位电路有MAX810、MAX812等器件。而MAX707、MAX708、MAX813L等器件同时有高、低电平复位输出信号和看门狗输出,在实际产品中经常会看到它们,需要注意的是,不同芯片的复位脉冲时间不一样,但是一般都可以达到100至200ms左右,完全满足常见处理器对复位时间的需求,有的芯片还支持复位阈值设定、备份电池切换、看门狗定时器、门限值检测器、复位脉冲极性选择等更为高级的功能,此处就留给读者朋友们自行去研究了。

特别推荐:

img

书名:《深入浅出STC8增强型51单片机进阶攻略》

作者:龙顺宇

定价:178.00元

内 容 简 介

本书以宏晶科技公司STC8系列增强型51单片机作为讲述核心,深入浅出地介绍该系列单片机片内资源及应用,其内容可在STC8A、STC8F、STC8C、STC8G及STC8H等系列单片机中应用。

本书以各种巧例解释相关原理,以资源组成构造学习脉络,选取主流开发工具构建开发环境,利用实战项目深化寄存器理解,注重“学”与“用”的结合,帮助读者朋友们快乐入门、进阶,筑牢基础,将相关理论知识应用到实际产品研发之中。

本书根据STC8系列单片机的资源脉络及初学者的学习需求,按照梯度设定22章,从内容组成上分为“无痛入门基础篇”和“片内资源进阶篇”。

无痛入门基础篇从第1章到第8章,主要讲解单片机的发展、学习方法、STC8系列单片机家族成员、软/硬件开发环境搭建及调试、I/O资源使用和配置、LED器件控制、A51和C51语言开发差异及特点、常见字符/点阵型液晶模块的驱动、独立按键/矩阵键盘交互编程的相关知识和应用。

片内资源进阶篇从第9章到第22章,主要讲解单片机的内部存储器资源、时钟源配置、中断源配置、基础型定时/计数器、高级型定时/计数器、UART异步通信接口、SPI同步串行外设接口、I2C串行通信、模数转换器A/D资源、电压比较器资源、片内看门狗资源、电源管理及功耗控制、ISP/IAP应用、EEPROM编程和RTX51实时操作系统的相关知识及应用。

作者介绍

龙顺宇(书童哥),硕士,高校教师,主要研究方向为嵌入式/单片机系统应用、物联网技术应用。中国电子学会电子工程师、中国工业和信息化部物联网工程师,台湾凌阳爱普物联网培训教师,电子芯客吧、电源网、电子发烧友论坛、与非网论坛、摩尔吧教育平台、原子哥教育平台、凡亿教育平台金牌讲师。《深入浅出STM8单片机入门、进阶与应用实例》书籍作者,思修电子工作室单片机理论教程及实战案例主讲人。

抽奖赠书

为了感谢大家对本公众号的支持,本次向清华大学出版社申请了5本《深入浅出STC8增强型51单片机进阶攻略》赠送给大家。

赠书采用抽奖的方式。

参与方法:关注【嵌入式大杂烩】公众号,并回复关键词:深入浅出STC8增强型51单片机进阶攻略,即可获取抽奖码。

开奖时间:6月26日20:00

温馨提示:中奖者请在开奖后24小时内在抽奖小程序上填收货地址或着把地址发到我的微信,否则视为放弃。

嵌入式大杂烩 专注于嵌入式技术,包括但不限于C/C++、嵌入式、物联网、Linux等编程学习笔记,同时,内包含大量的学习资源。欢迎关注,一同交流学习,共同进步!
评论
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 88浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 104浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 131浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 86浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 88浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 153浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 121浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 111浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 134浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 135浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦