工程师笔记|DFSDM时钟配置问题

STM32单片机 2022-06-22 18:00

关键词:

DFSDM, 时钟


1.引言

DFSDM 全称为 Digital filter for sigma delta modulators。顾名思义,其作用主要是对外部 Σ∆调制的数字信号进行滤波。STM32L462xx 系列支持最多 4 个外部串行通道,2 个数字滤波器,最大可达到 24bit 的 ADC 分辨率。并且支持 SPI 接口和曼切斯特编码 1-wire接口。



2.问题分析

客户使用 STM32L462xx 的 DFSDM 连接数字麦克风,将麦克风的 PDM 信号转化为 PCM 信号,并采集数据。使用的参数为 16KHz 采样,2M 左右的时钟驱动数字麦克风,能够正常读取麦克风数据。了解到他们所使用的数字麦克风可以使用 768K 时钟驱动,从而达到更低功耗的状态,但是客户无法配置出合适的时钟,即使勉强配置到了768K 附近,通过 DFSDM 采集到的数据也是混乱的,完全无法解析。

了解到基本需求后,我们需要对 DFSDM 的时钟有一定了解。从 RM0394 参考手册中可以找到如下内容:



DFSDM 可以提供一个时钟用于驱动外部 sigma delta 调制器,并且时钟来源可以是DFSDM 时钟或者 Audio 时钟,其中 Audio 时钟就是 SAI1 的时钟。

在处理和时钟相关的配置问题时,强烈建议使用 CubeMX 的时钟配置界面进行配置。我们先来看下客户用于驱动外部数字麦克风的时钟配置。

从图中可以看出,DFSDM 的时钟为 36MHz,来自 PCLK2。SAI1 的时钟约为 34.29MHz来自 PLLSAI1P。



这是关于 DFSDM 输出时钟的代码片段,可以看到使用了 AUDIO 的时钟作为输出,并且使用 17 分频,那么最终驱动数字麦克风的时钟为 34.29/17≈2.02MHz。

再来看看滤波器部分参数的设计:



其中,使用了 4 阶 SINC 滤波,过采样参数为 128,那么 2.02MHz/128≈16KHz。也就是说这种配置参数下,可以接近 16KHz 的采样率来对音频数据采样。

客户想要将麦克风驱动时钟重新配置为 768K,但只考虑修改 Divider 和 Oversampling 参数是配置不出来的。



3.问题解决

我们可以反过来推,要想获得 16KHz 采样率,768KHz 的时钟,首先需要满足以下公式:768K/ Oversampling = 16K, 那么 Oversampling=48。Oversampling 这个参数是比较好确定的,而 768K 来自于 CLK_SAI1/Divider, 这两个参数目前无法确定,其中 CLK_SAI1 又来自于 PLLSAI1P,它由 PLLSAI1_N, PLLSAI1_P 两个系数决定。也就是说要想获得 768K 的时钟,需要把这些参数都配置为合适的值。到这一步,实际上没有直接的公式可以求下去了,只能自己测试并调整,建议可以先将 Divider 定好,然后通过 CLK_SAI1/Divider=768K 就可以求出CLK_SAI1 的值,将这个值手动输入到 Cubemx 的时钟配置界面可以自动求出合适的

PLLSAI1_N, PLLSAI1_P 系数,这样可以大大减少调整时间。如果无法求出合适的值,CubeMX也会进行提示,那么只能重新换 Divider 来测试了。

最终调试下来的值如下图所示:



我选择的 Divider=50,那么可以算出CLK_SAI1=50*768K=38.4MHz,输入到上图界面中可以得到 PLLSAI1_N=12, PLLSAI1_P=5。

至此,已经可以正确得到 768KHz 的时钟驱动麦克风了,但是目前仍然无法获取到准确的音频数据。

由于前面修改了 Oversampling,该参数会影响采样值。在参考手册中可以找到下表:



从表中可以看到,之前是 FOSR=128,Sinc4,对应的数值为+/-268435456,但是DFSDM 的数据寄存器只有 24bit,2^23<268435456 的,也就是说需要进行移位,只能以损失精度为代价进行转换。客户代码中有以下配置:



数据需要右移 5 位保存到数据寄存器,那么现在我们的 FOSR 修改为了 48,对应上表可以看到数值是比较小的,不需要移位处理,所以改为:

到这里,我们需要修改的内容就全部结束了。将这些修改内容通知客户,让其进行测试,测试结果也比较满意。



小结

DFSDM 在数字音频应用中比较常见,主要用于将数字麦克风的 PDM 信号转换为PCM 信号,如果没有DFSDM 外设,就只能使用软件库进行转化,效率比较低。当然,也可以用于一些模拟信号的采集,需要外部 Sigma Delta 调制器调制好之后再进行滤波,这样得到的 ADC 精度要比通用的 ADC 精度更高,在要求高精度 ADC 的场合,不失为一种较好的方案。


                

© THE END



点击“阅读原文”,可下载原文档

STM32单片机 ST MCU (产品+工具+资料+技术+市场+活动)x 您的关注x您的支持 = STM32 单片机蝴蝶乐园
评论
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 454浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 465浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 495浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 104浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 487浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 49浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 55浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 177浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 477浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 516浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 442浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦