从一根铜条就搞定的超便捷液位测量,看背后的射频回波损耗测量方法

电子森林 2020-03-31 00:00

好文章当然要分享啦~如果您喜欢这篇文章,请联系后台添加白名单,欢迎转载哟~

液位测量数据是实现生产和过程控制的重要参数。现代化工业生产中会储存、运输、使用各种各样的液体原料和产成品,例如石油化工企业的油料和各种溶剂,制药、造纸企业生产使用的各种浆液和浆料,食品企业生产和储存的各种乳液和饮料、果汁等,都需要对其进行安全和完善的保存,因此这些液位数据可以说是保证企业能够正常稳定生产的基本要求。


早期,由于工业领域生产规模不大,液位测量主要采用机械测量方法,而后伴随着生产模式的变革,越来越多的自动化工业生产系统中需要进行实时液位监测。目前工业领域通用的液位计测量原理涉及到力学、热学、电学、光学等多方面,而按照接触方式来划分,可以分为接触式测量和非接触式测量。在前不久举办的IMS2019上,来自ADI的工程师就现场为大家展示了一种新型非接触式液位测量手段,其利用全集成式双向检波器IC,将RF传输线路作为传感器,可以沿着存储桶的一条边来轻松测量液位,实现了一款需要器件极少的工业应用。


  

ADI在IMS2019期间展示新型液位测量系统


1
如何实现简易水位测量?这套解决方案可以有

ADL5920 是一款超宽带双向检测器,可以在一个信号路径中同时测量正向和反向 rms 功率级别以及回波损耗。其将基于宽带定向耦合器与两个RMS响应检测器集成在一个5 mm×5 mm表贴封装中。相比于要在尺寸和带宽之间艰难取舍的传统分立式定向耦合器,该器件具有明显的优势,尤其是在1 GHz以下的频率。


使用ADL5920测量水位非常简单。测量时,会使用一根由黄铜条制成的双导体传感器,采用接地信号结构类型。本质上就是由一根50 Ω硬线再加上空气,这条线的电阻会根据外部环境改变而改变,在确保传输线路的间隔和结构一样的情况下,有水时电阻会降低,再使用ADL5920,在该传输线路顶部位置测量回波损耗,据此实施水位测量。



在给水箱里注水后可以看到,ADL5920正在测量正向功率和反射功率,随着水位的升高,正向功率保持不变,反射功率逐渐升高,这是因为传输线路的特性在发生变化,这里显示的值表示这是非接触式测量。另外,由于器件采用端接设计,所以不会有大量杂散RF辐射到外面,即这是一个近场现象,而不是天线。



2
功率测量的方法论——定向耦合器和RF检波器

在线RF功率和回波损耗测量通常利用定向耦合器和RF功率检波器来实现。如下图,双向耦合器用于无线电或测试测量应用中,以监测发射和反射的RF功率。有时也希望将RF功率监测嵌入电路中,一个很好的例子是将两个或更多信号源切换到发射路径(使用RF开关或外部电缆)。


测量RF信号链中的正向和反射功率


定向耦合器具有方向性这一重要特性,也就是它能区分入射和反射RF功率。当入射RF信号在通往负载的路程中经过正向路径耦合器时,耦合一小部分RF功率(通常是比入射信号低10 dB至20 dB的信号),输入RF检波器。当正向功率和反射功率均要测量时,须再使用一个耦合器,其方向与正向路径耦合器相反。两个检波器的输出电压信号将与正向和反向RF功率水平成比例。


采用定向耦合器和RF检波器的典型RF功率测量系统


表贴定向耦合器的基本问题是须在带宽和尺寸之间进行取舍。虽然频率覆盖范围为一个倍频程(即FMAX等于两倍FMIN)的双向定向耦合器通常采用小至6 mm2的封装,但多倍频程表贴定向耦合器却要大得多。宽带连接器式定向耦合器具有多倍频程的频率覆盖范围,但显著大于表贴器件。


连接器式定向耦合器、表贴定向耦合器以及带定向桥和双RMS检测器的ADL5920集成IC


3
超小型&超宽带——专利定向桥助力实现“双超”

ADL5920不是利用定向耦合器来检测正向和反射信号,而是采用一种专利的定向桥技术来实现宽带且紧凑的片内信号耦合。定向桥的概念基于惠斯登电桥,即在平衡时产生的差分电压为零。在惠斯登电桥中,两条支路之一中的一个电阻是可变的 (R2),而另外两个电阻(R1和R3)是固定不变的。总共有四个电阻——R1、R2、R3和Rx,其中Rx是未知电阻。如果R1 = R3,那么当R2等于Rx时,VOUT = 0 V。当可变电阻具有合适的值,使得电桥左右两边的分压比相等,从而在产生VOUT的差分检测节点上产生0 V差分信号时,认为电桥处于平衡状态。


惠斯登电桥


下图显示了与ADL5920中使用类似的双向桥。对于50Ω环境,单位电阻R等于50Ω。由于这是一个对称网络,因此当RS和RL也等于50Ω时,输入和输出电阻RIN和ROUT相同且接近50Ω。当源阻抗和负载阻抗均为50Ω时,内部网络的欧姆分析告诉我们,与VREV相比,VFWD将相当大。在实际应用中,这对应于从信号源到负载的最大功率传输。这导致反射功率很小,进而导致VREV非常小。


简化双向桥电路图


下图显示了改变负载对正向功率测量的影响。将规定的功率水平施加于RFIN输入,RFOUT上的负载回波损耗从0 dB变化到20 dB。正如预期的那样,当回波损耗在10 dB到20 dB范围内时,功率测量精度非常好。但随着回波损耗降低到10 dB以下,功率测量误差开始增加。值得注意的是,回波损耗为0 dB时,误差仍在1 dB范围内。


测得的正向功率与施加的功率和负载的回波损耗之间的关系,在1 GHz 下测量


4
总结

凭借在线测量RF功率和回波损耗的能力,ADL5920可用于多种在线RF功率监测应用,其小尺寸意味着它可以置身于许多电路中,而不会对空间造成太大影响。ADI公司提供的创新解决方案,不仅可靠性高操作便捷,体积也很小巧,为需要液位测量应用的工业厂商提供了极高性价比的解决方案。





ADL5920

  • 宽带匹配 9 kHz 至 7 GHz 运行
  • 正向和反向功率以及回波损耗测量
  • 输入范围为 49 dB ±1.0 dB,最低输入电平为 −19 dBm,1 GHz 时 ±1.0 dB
  • dB 线性 rms(波峰因数敏感)输出
  • 插入损耗:1 GHz 时 1.1 dB,6 GHz 时 1.9 dB
  • 输入和输出回波损耗和 VSWR
    • 1 GHz:22 dB/1.16:1
    • 3 GHz:14 dB/1.5:1
    • 6 GHz:12 dB/1.7:1
  • 输出 IP3:1 GHz 时为 70.5 dBm
  • 方向性
    • 1 GHz 时为 20 dB
    • 3 GHz 时为 13 dB
    • 6 GHz 时为 5 dB
  • 最大输入功率
    • 开路或短路端电极为 30 dBm
    • 匹配端电极为 33 dBm



硬禾小帮手 - 硬件工程师的设计助手

硬禾学堂 - 硬件工程师的在线学习平台


电子森林 讲述电子工程师需要掌握的重要技能: PCB设计、FPGA应用、模拟信号链路、电源管理等等;不断刷新的行业新技术 - 树莓派、ESP32、Arduino等开源系统;随时代演进的热点应用 - 物联网、无人驾驶、人工智能....
评论
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 73浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 81浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 49浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 47浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 77浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 101浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 68浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦