线性调频(LFM或Chirp)脉冲信号及脉冲压缩处理

云脑智库 2022-06-21 00:00


来源 | 雷达信号处理matlab

智库 | 云脑智库(CloudBrain-TT)

云圈 | “云脑智库微信群”,请加微信:15881101905,备注您的研究方向

声明 | 本号聚焦相关知识分享,内容观点不代表本号立场,可追溯内容均注明来源,若存在版权等问题,请联系(15881101905,微信同号)删除,谢谢。


雷达基本工作原理


我们知道在雷达工作过程中,雷达发射机产生的大功率电磁波,经天线辐射至空间中,在某一个很窄的方向上形成波束,向前传播。


图源自网络


当电磁波遇到目标后,将沿着各个方向产生折射,其中一部分电磁能量反射回雷达所在的方向,被雷达天线获取后送到接收机,形成回波信号。如上图所示。

由于传播过程中电磁能量会随着传播距离而衰减,因而雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波的信息,送到显示器,显示出目标的距离、方向、速度等。


脉冲压缩处理(匹配滤波)


在雷达应用中,对雷达的作用距离、分辨能力、测量精度等性能指标有明确的要求。由上期模糊函数可知,提高雷达距离分辨能力和测距精度,需要信号具有大的带宽;而提高速度分辨力和测速精度,需要信号具有大的时宽。


除此之外,提高雷达系统的作用距离还要求信号具有大的能量,在系统的发射设备峰值功率受限的情况下,大的信号能量只能靠加大信号的时宽得到,这都要求信号具有大的时宽、带宽乘积。


由信号与系统理论可知,普通信号的时宽带宽积为一常量,所以信号同时具有大的时宽和带宽是不可能的。而脉冲压缩技术的出现有效地解决了雷达系统作用距离和距离分辨力之间的矛盾。

脉冲压缩处理将发射的宽脉冲信号压缩成窄脉冲信号,既可以发射宽脉冲以提高平均功率和雷达的检测能力,又能保持窄脉冲的距离分辨率。


脉冲压缩信号的大时宽带宽积的性能,大多是通过信号的非线性相位调制获得的,如脉宽内线性调频、非线性调频、频率编码和相位编码等。


雷达几乎都是在数字域进行脉冲压缩处理的,脉冲压缩处理本身就是实现信号的匹配滤波,只是在模拟域一般称为匹配滤波,而在数字域称为脉冲压缩。


由#匹配滤波器讲解#可知,匹配滤波器是输入端输入信号与加性白噪声,输出端信噪比最大的滤波器,即一个与输入信号相匹配的最佳滤波器。而雷达对目标的检测概率随着信噪比的增加而增加


线性调频信号(LFM或Chirp)


线性调频信号(Linear Frequency Modulation)的突出优点是匹配滤波器对回波信号的多普勒频移不敏感,即使回波信号有较大的多普勒频移,匹配滤波器仍能起到脉冲压缩的作用,缺点是输出响应将产生与多普勒频移成正比的附加时延。


线性调频矩形脉冲信号的表达式可写为


其中,信号的复包络为


式中  为脉冲宽度;  为调频斜率,  为调频带宽,也称频偏。


其中  表示宽度为  的矩形脉冲,即


信号的瞬时频率为 

信号波形示意图如下图所示。



典型的线性调频波形如下图所示。



线性调频信号信号的频谱特性


线性调频信号的频谱由信号的复包络完全决定。其傅里叶变换形式为


作变量代换  ,上式即可化为


其中积分限


采用菲涅尔(Fresnel)积分公式


考虑其对称性


信号频谱可表示为


下图显示了线性调频波形实部、虚部和幅度谱的典型曲线。





根据菲涅尔积分的性质,当时  ,信号 95% 以上的能量集中在  的范围内,频谱接近于矩形。下图给出了  、  、  的频谱。





当  时,上式的频谱可近似表示为


这时,  的幅度谱  和相位谱  可近似表示为


本文参考《雷达系统分析与设计(第三版)》,有兴趣的可以购买书本帮助理解。

由模糊函数可知,雷达系统想要同时满足高距离分辨率和高速度分辨率,就必须采用大时宽带宽积信号。对于一个普通信号,其时宽带宽积为一个常数,即窄脉冲具有宽频带,宽脉冲具有窄频带。


脉冲压缩处理可以将发射的宽脉冲信号压缩成窄脉冲信号,使信号既可以发射宽脉冲以提高平均功率和雷达的速度分辨率,又能保持窄脉冲的距离分辨率。而脉冲压缩处理本身就是信号的匹配滤波,只是在模拟域一般称为匹配滤波,在数字域称为脉冲压缩。


脉冲压缩信号的大时宽带宽积的性能,大多是通过信号的非线性相位调制获得的,如脉宽内线性调频、非线性调频、频率编码和相位编码等。


LFM信号的脉冲压缩


假设雷达发射线性调频脉冲信号为


式中,  ,  为发射脉冲宽度,  为中心载频,  为调频斜率,  为调频带宽。该信号的复包络为


则该复包络的离散信号(采样间隔为)为


下图为发射脉冲宽度,调频带宽,采样间隔时LFM 信号及其幅频特性。



假定目标初始距离  对应的时延为  ,即  ;目标的径向速度为  。若不考虑幅度的衰减,则接收信号为


式中  为相对于发射信号的时延,则


其中  是光速。则


其中


接收信号进行混频、滤波,得到接收的基带复信号模型为


由于  ,故  ,目标的多普勒频率  ,时延项  与时间  无关,包络检波时为常数,因此


时域脉冲压缩


根据匹配滤波方程,令匹配滤波器的冲击响应  ,则匹配滤波器的输出为


则匹配滤波器输出为


其模值为


可见,输出信号在  和  处取得最大值。


LFM 信号时域匹配滤波输出信号如下图所示。



脉压输出结果均具有  函数的包络形状,其  主瓣宽度为  ,第一旁瓣的归一化副瓣电平为  。如果输入脉冲幅度为1,匹配滤波器在通带内传输系数的增益为1,则输出脉冲幅度为


这里,  ,表示输入脉冲和输出脉冲的宽度比,称为压缩比,即为时宽带宽积


下图为 LFM 信号经过匹配滤波后输出的结果,从图中我们可以看出输出结果与辛格函数高度吻合。



图中反映出理论与仿真结果吻合良好。第一旁瓣的归一化副瓣电平为  ,其  主瓣宽度为  。


由此可以看出,对LFM信号,匹配滤波器对回波信号的多普勒频移不敏感,因而可以用一个匹配滤波器来处理具有不同多普勒频移的信号,这将大大简化信号处理系统;另外,这类信号的产生和处理都比较容易。


频域脉冲压缩


现代雷达的脉冲压缩处理均采用数字信号处理的方式。实现方法有两种:当要求较小的脉压比时,经常采用时域相关的处理方式;当要求较大的脉压比时,通常利用 FFT 在频域实现。


由于匹配滤波器是线性时不变系统,根据傅立叶变换的性质,


当两个信号都被正确采样时,脉冲压缩输出信号可以表示为


下图表示在频域实现线性调频信号数字脉冲压缩的方框图。



采用频域实现脉冲压缩方法相对于时域卷积而言,其运算量将大为减少,而且在脉冲压缩时可以利用加窗函数来抑制旁瓣,只需将匹配滤波器系数与窗函数预先进行频域相乘(频域加窗)或者时域相乘(时域加窗),即


其中为  窗函数,可以根据需要选取合适的窗函数。将其结果预先存入DSP的匹配滤波器系数表中,不需要增加运算量。


需要注意的是,FFT/IFFT 的点数不是任意选取的。假设输入信号点数为  ,滤波器阶数为  ,那么经过滤波后的输出信号点数应为  ,则对于 FFT 点数的选择必须保证其大于等于  ,通常取  的幂对应的数值大于等于  。因此,在对滤波器系数及输入信号  进行 FFT 之前,要先对序列进行补零处理。


假定雷达脉冲压缩处理的距离窗定义为


其中,  和  分别表示雷达探测的最大和最小作用距离。单基地雷达在发射期间不接收,因此雷达的最小作用距离取决于发射脉冲宽度,例如,若脉冲宽度  ,则  ,表明在近距离存在  的盲区。


根据奈奎斯特采样定理,对实信号而言,采样频率  ,采样间隔  。对时宽为  的 LFM 信号 FFT 的频率分辨率为  ,则所要求的最小样本数为


因此,总共需要(  )个实样本或(  )个复样本才能完全描述时宽为  、带宽为  的 LFM 波形。假定复采样间隔  对应的距离量化间隔为  (通常小于或等于距离分辨率  ),则雷达脉冲压缩处理的距离穿对应的距离单元数为  ,因此,完成接收窗  信号的频域脉压需要的 FFT 的点数为


实际中为了更好地实现 FFT,通过补零将扩展为  的幂,即 FFT 的点数为


LFM 信号频域匹配滤波输出信号如下图所示。



因为线性调频信号通过匹配滤波器后,输出压缩脉冲的包络近似为  形状。其中最大的第一对旁瓣比主瓣电平小  ,其它旁瓣随其离主瓣的间隔  按  的规律衰减,旁瓣零点间隔为  


在多目标环境中,强目标回波的旁瓣会埋没附近较小目标的主瓣,导致目标丢失。为了提高分辨多目标的能力,必须采用旁瓣抑制或加权技术


加权可以在发射端、接收端或收、发两端上进行,分别称为单向加权或双向加权,其方式可以是频域幅度或相位加权,也可以是时域幅度或相位加权。此外,加权可在射频、中频或视频级中进行。


为了使发射机工作在最佳功率状态,一般不在发射端进行加权。目前应用最广的是在接收端进行脉冲压缩过程中采用频域幅度加权。


现在假设目标分别距离为 60km,75km,使用线性调频脉冲压缩信号对目标进行测距。其仿真结果如下图所示。



本文参考《雷达系统分析与设计(第三版)》,有兴趣的可以购买书本帮助理解。



- The End

版权声明:欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系删除。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

投稿/招聘/推广/合作/入群/赞助 请加微信:15881101905,备注关键词

“阅读是一种习惯,分享是一种美德,我们是一群专业、有态度的知识传播者.”

 阅读原文加入知识星球,发现更多精彩内容.

 分享💬 点赞👍 在看❤️@以“三连”行动支持优质内容! 

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 43浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 84浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 60浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 82浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 107浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 60浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 53浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 111浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 69浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 59浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 93浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 59浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 53浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦