手把手教系列之IIR数字滤波器设计实现

嵌入式ARM 2020-03-30 00:00
【导读】:在嵌入式系统中经常需要采集模拟信号,采集模拟信号的信号链中难免引入干扰,那么如何滤除干扰呢?今天就来个一步一步描述如何设计部署一个IIR滤波器到你的系统。写这篇文章考虑到很多粉丝是做单片机系统开发的,经常会需要采集模拟信号,系统中往往存在各种各样的干扰,干扰常常让人一筹莫展,所以花了一周时间整理出IIR滤波器设计部署的干货文章,照此一步一步做,你必会解决大部分干扰问题。

编外语: 文章写作过程虽谈不上呕心沥血,但也可算绞尽脑汁。 在此也呼吁粉丝朋友积极参与互动,或点在看,或分享,或留言评论,当然如能买杯咖啡,那就更好啦!如果大家对此类话题感兴趣,我会写出系列信号处理文章以答谢各位的厚爱,如果大家对此类话题不感兴趣,就不在花过多时间整理发布了。在此感谢各位关注厚爱!

何为IIR滤波器?

无限冲激响应(IIRInfinite Impulse Response)是一种适用于许多线性时不变系统的属性,这些系统的特征是具有一个冲激响应h(t),该冲激响应h(t)不会在特定点上完全变为零,而是无限期地持续。这与有限冲激响应(FIRFinite Impulse Response)系统形成对比,在有限冲激响应(FIR)系统中,对于某个有限T,在时间t> T时,冲激响应确实恰好变为零。线性时不变系统的常见示例是大多数电子和数字滤波器。具有此属性的系统称为IIR系统或IIR滤波器。对于什么叫冲激响应,这里就不展开解释了,有兴趣的可以查阅相关书籍。

这是常见的教科书式数学严谨定义,很多人看到这一下就蒙了,能说人话吗?

线性时不变系统理论俗称LTI系统理论,源自应用数学,直接在核磁共振频谱学、地震学、电路、信号处理和控制理论等技术领域运用。它研究的是线性、非时变系统对任意输入信号的响应。虽然这些系统的轨迹通常会随时间变化(例如声学波形)来测量和跟踪,但是应用到图像处理和场论时,LTI系统在空间维度上也有轨迹。因此,这些系统也被称为线性非时变平移,在最一般的范围理论给出此理论。在离散(即采样)系统中对应的术语是线性非时变平移系统。由电阻、电容、电感组成的电路是LTI系统的一个很好的例子。比如一个运放系统在一定频带范围内满足信号的时域叠加,输入一个100Hz和200Hz正弦信号,输出频率是这两种信号的线性叠加。

用数学对LTI系统描述:

线性:输入x1(t),产生响应 y1(t),而输入x2(t),产生相应y2(t) , 那么放缩和加和输入 ax1(t)+bx1(t), 产生放缩、加和的响应ay1(t)+by1(t),其中a和b是标量,对于任意的有:

输入  

产生响应为:

时不变性:指如果将系统的输入信号延迟δ秒,那么得到的输出响应也相应延时δ秒。用数学描述,也即如果输入x1(t),产生响应y1(t) ,而输入x1(t+δ) ,产生响应 y1(t+δ)

这么描述还是不易懂,来个图,有图有真相:

假定一个信号放大电路对100Hz正弦信号放大2倍,则输出为:

而对200Hz的正弦信号,假定其放大倍数为1.7倍。(做过运放电路设计的朋友应该有经验,在其同频带其放大倍数往往并不平坦,也即幅频响应在频带内不平坦,这是比较常见的)。也即输入为:

则响应为:


那么如果输入100Hz和200Hz的时域叠加信号,则其输入为:

则其响应为:

由这些图可看出,输入信号的形状保持不变,输出为对应输入的线性时域叠加。对于时不变,就不用图描述了,在一个真实电路中,如果输入延迟一定时间,则响应对应延迟相同时间输出。

上面这么多文字只是为了描述在什么场合可以使用IIR滤波器对信号进行数字滤波。总结而言,就是在线性时不变系统中适用。换言之,在大多数电路系统中我们都可以尝试采用IIR滤波器进行数字滤波。

那么究竟什么是IIR滤波器呢?从数字信号处理的书籍中我们能看到这样的Z变换信号流图:

Z的-1次方表示延迟一拍,在数字系统中表示对于输入信号而言,即为上一次采样值,对于输出而言,即为上一次的输出值。


在时域中对于上述流图,用时域描述即为:

如果熟悉Z变换,则Z变换传递函数为:

上述数字滤波器,如果从编程的角度来看,x(n-1),表示上一次的信号,可能是来自ADC的上次采样,而y(n-1)则为上一次滤波器的输出值,对应就比较好理解x(n-N)就表示前第n次输入样本信号,而y(n-M)则为前第M次滤波器的输出。

说了这么多,只是为了更好的理解概念,只有概念理解正确,才能使用正确。概念理解这对工程师而言,非常之重要。

如何设计呢?

MATLAB提供了非常容易使用的FDATool帮助我们设计数字滤波器,真正精彩的地方开始了,让我们拭目以待究竟如何一步一步设计并实施一个IIR滤波器。首先打开MATLAB,在命令行中敲fdatool,然后敲回车

弹出窗体就是fdatool了,如下:

在设计具体,有几个相关概念需要澄清:
Fs :采 样率,单位为Hz,真实部署在系统中,请务必确保样本是按照恒定采样率进行采样,否则将得不到想要的效果。
Fpass : 通频带,单位为Hz,即系统中期望通过的最高频率。
Fstop : 截至频率,即幅频响应的-3dB处的频率,这个如不理解,请自行查阅相关书籍。
分贝dB : 这是一个无单位反应输出与输入倍数的一个术语。电学中分贝与放大倍数的转换关系为:
  • A(V)(dB)=20lg(Vo/Vi);电压增益,Vo 为输出电压,Vi为输入电压

  • A(I)(dB)=20lg(Io/Ii);电流增益,Io 为输出电流,Ii为输入电流

  • A(p)(dB)=10lg(Po/Pi);功率增益,Po 为输出功率,Pi为输入功率

滤波器类型:这里有Butterworth(巴特沃斯)、Chebyshev Type I,Chebyshev Type II、(切比雪夫)、Elipic 等可选。

  • 巴特沃斯 Butterworth,也被称作最大平坦滤波器。巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有纹波。

  • 切比雪夫 Chebyshev,是在通带或阻带上频率响应幅度等波纹波动的滤波器。切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。

  • 椭圆 Elliptic,椭圆滤波器是在通带和阻带等波纹的一种滤波器。

  • …这里就不一一介绍了,有兴趣可以去查信号处理书籍。

就其特点,这里对其中几种略作介绍:

  • 巴特沃斯具有最平坦的通带。

  • 椭圆滤波器衰减最快,但是通带、阻带都有波纹。

  • 切比雪夫滤波器衰减比巴特沃斯快,但比椭圆滤波器慢,波纹区域可选择。

假设我们需要设计一个IIR滤波器,采样率为32000Hz, 有用信号频率在10000Hz内,设计IIR滤波器对信号进行数字滤波。这里为节省算力,我们指定滤波器的阶数,也即传递函数中N/M中的最大值,一般而言N大于M。

这里指定阶数为8阶,类型指定为巴特沃斯型IIR滤波器,输入阶数8阶,采样率32000Hz,然后点击Design Filter如下图所示:

其相频响应曲线如下:


除此之外,我们还可以将幅频与相频曲线放在一个频率坐标上去看设计结果:

导出滤波器参数,这里我们选择,

然后就得到了一个文件,保存2KHz_LPF.fcf,文件名随你喜欢。

文件内容如下:

Generated by MATLAB(R) 8.4 and the Signal Processing Toolbox 6.22.
Generated on: 27-Mar-2020 21:27:06

Coefficient FormatDecimal

Discrete-Time IIR Filter (real)                            
-------------------------------                            
Filter Structure    : Direct-Form IISecond-Order Sections
Number of Sections  : 4                                    
Stable              : Yes                                  
Linear Phase        : No                                   


SOS Matrix:                                                  
1  2  1  1  -1.7193929141691948  0.8610574795347461          
1  2  1  1  -1.5237898734101736  0.64933827386370635         
1  2  1  1  -1.4017399331200424  0.51723237044751591         
1  2  1  1  -1.3435020629061745  0.45419615396638446         

Scale Values:                                                
0.035416141341387819                                         
0.031387100113383172                                         
0.028873109331868367                                         
0.027673522765052503                                          

至此设计工作就结束了,马上进入滤波器的部署测试阶段。

这里有个概念需要略作解释:什么叫直接II型 SOS

所谓直接II型,SOS(second order section)理解很简单,本质是将IIR Z传递函数分解为上述二阶块的级联形式。

部署测试滤波器

到这里,没有经验的朋友可能会说,这么一堆参数我该咋用呢?

需要自己去写前面描述的计算公式吗?当然你也可以这么做,这里就不写了,ARM的CMSIS库已经帮大家设计好了种类繁多的数字信号处理函数实现了,而且经过了测试,这里直接拿来用即可。有兴趣自己写也不难,只要理解Z传递函数概念内涵,非常容易实现。这里我们采用32位浮点实现函数:

arm_biquad_cascade_df1_f32。该函数位于:

CMSIS\DSP\Source\FilteringFunctions\arm_biquad_cascade_df1_init_f32.c

CMSIS\DSP\Source\FilteringFunctions\arm_biquad_cascade_df1_f32.c

我们来看一看这个函数:

arm_biquad_cascade_df1_init_f32.c:

/*
*作用      :初始化滤波器
*S        :指向浮点SOS级联结构的实例。
*numStages:滤波器中二阶SOS的数量
*pCoeffs  :滤波器参数指针,参数按下列顺序存储
*          {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
*pState   :历史状态缓冲区指针
*/

void arm_biquad_cascade_df1_init_f32(
        arm_biquad_casd_df1_inst_f32 * S,
        uint8_t numStages,
  const float32_t * pCoeffs,
        float32_t * pState)

{
  /* Assign filter stages */
  S->numStages = numStages;

  /* Assign coefficient pointer */
  S->pCoeffs = pCoeffs;

  /* Clear state buffer and size is always 4 * numStages */
  memset(pState, 0, (4U * (uint32_t) numStages) * sizeof(float32_t));

  /* Assign state pointer */
  S->pState = pState;
}

arm_math.h 定义了须用到的结构体,对于本例相关的结构体为arm_biquad_casd_df1_inst_f32

typedef struct
{

  unsigned int numStages; /*2阶节的个数,应为2*numStages.        */
  float *pState;          /*状态系数数组指针,数组长度为4*numStages*/
  float *pCoeffs;         /*系数数组指针, 数组的长度为5*numStages.*/
} arm_biquad_casd_df1_inst_f32;

滤波器具体滤波函数为:

arm_biquad_cascade_df1_f32

/**
 *  *S       :指向浮点Biquad级联结构的实例.
 *  *pSrc    :指向输入数据块。
 *  *pDst    :指向输出数据块。
 *  blockSize:每次调用要处理的样本数。
 *  返回值    :无.
 */

void arm_biquad_cascade_df1_f32(
  const arm_biquad_casd_df1_inst_f32 * S,
  float * pSrc,
  float * pDst,
  unsigned int blockSize)

{
  float *pIn = pSrc;                         /*源指针     */
  float *pOut = pDst;                        /*目的指针    */
  float *pState = S->pState;                 /*状态指针    */
  float *pCoeffs = S->pCoeffs;               /*参数指针    */
  float acc;                                 /*累加器      */
  float b0, b1, b2, a1, a2;                  /*滤波器参数   */
  float Xn1, Xn2, Yn1, Yn2;                  /*滤波器状态变量*/
  float Xn;                                  /*临时输入     */
  unsigned int sample, stage = S->numStages; /*循环计数     */

  do
  {
    /* Reading the coefficients */
    b0 = *pCoeffs++;
    b1 = *pCoeffs++;
    b2 = *pCoeffs++;
    a1 = *pCoeffs++;
    a2 = *pCoeffs++;

    Xn1 = pState[0];
    Xn2 = pState[1];
    Yn1 = pState[2];
    Yn2 = pState[3];

    sample = blockSize >> 2u;

    while(sample > 0u)
    {
      /* 读第一个输入 */
      Xn = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      Yn2 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = Yn2;

      /* 每次计算输出后,状态都应更新. */
      /* 状态应更新为:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */

      /* Read the second input */
      Xn2 = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      Yn1 = (b0 * Xn2) + (b1 * Xn) + (b2 * Xn1) + (a1 * Yn2) + (a2 * Yn1);

      /* 将结果存储在目标缓冲区的累加器中. */
      *pOut++ = Yn1;

      /* 每次计算输出后,状态都应更新. */
      /* 状态应更新为:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */

      /*读第三个输入 */
      Xn1 = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      Yn2 = (b0 * Xn1) + (b1 * Xn2) + (b2 * Xn) + (a1 * Yn1) + (a2 * Yn2);

      /* 将结果存储在目标缓冲区的累加器中. */
      *pOut++ = Yn2;

      /* 每次计算输出后,状态都应更新. */
      /* 状态应更新为: */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      /* 读第四个输入 */
      Xn = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      Yn1 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn2) + (a2 * Yn1);

      /* 将结果存储在目标缓冲区的累加器中. */
      *pOut++ = Yn1;

      /* 每次计算输出后,状态都应更新. */
      /* 状态应更新为:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      Xn2 = Xn1;
      Xn1 = Xn;

      /* 递减循环计数器 */
      sample--;
    }

    /* 如果blockSize不是4的倍数,
    *请在此处计算任何剩余的输出样本。
    *不使用循环展开. */

    sample = blockSize & 0x3u;

    while(sample > 0u)
    {
      /* 读取输入 */
      Xn = *pIn++;

      /* acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
      acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2);

      /* 将结果存储在目标缓冲区的累加器中. */
      *pOut++ = acc;

      /* 每次计算输出后,状态都应更新。 */
      /* 状态应更新为:    */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      Xn2 = Xn1;
      Xn1 = Xn;
      Yn2 = Yn1;
      Yn1 = acc;

      /* d递减循环计数器 */
      sample--;
    }

    /*  将更新后的状态变量存储回pState数组中 */
    *pState++ = Xn1;
    *pState++ = Xn2;
    *pState++ = Yn1;
    *pState++ = Yn2;

    /*第一阶段从输入缓冲区到输出缓冲区.     */
    /*随后的numStages在输出缓冲区中就地发生*/
    pIn = pDst;

    /* 重置输出指针 */
    pOut = pDst;

    /* 递减循环计数器 */
    stage--;

  } while(stage > 0u);
}

开始测试:

#include <stdio.h>
#include <math.h>
/*
SOS Matrix:                                                  
1  2  1  1  -1.7193929141691948  0.8610574795347461          
1  2  1  1  -1.5237898734101736  0.64933827386370635         
1  2  1  1  -1.4017399331200424  0.51723237044751591         
1  2  1  1  -1.3435020629061745  0.45419615396638446         

Scale Values:                                                
0.035416141341387819                                         
0.031387100113383172                                         
0.028873109331868367                                         
0.027673522765052503  
做如下转换:
1.缩放
[1  2  1] * 0.035416141341387819
[1  2  1] * 0.031387100113383172
[1  2  1] * 0.028873109331868367
[1  2  1] * 0.027673522765052503
得到:
[0.035416141341387819  2*0.035416141341387819  0.035416141341387819]
[0.031387100113383172  2*0.031387100113383172  0.031387100113383172] 
[0.028873109331868367  2*0.028873109331868367  0.028873109331868367] 
[0.027673522765052503  2*0.027673522765052503  0.027673522765052503]
2.舍掉第四列参数
3.将后两列分别乘以-1,即:
0.035416141341387819  2*0.035416141341387819  0.035416141341387819  -1.7193929141691948  0.8610574795347461          
0.031387100113383172  2*0.031387100113383172  0.031387100113383172  -1.5237898734101736  0.64933827386370635         
0.028873109331868367  2*0.028873109331868367  0.028873109331868367  -1.4017399331200424  0.51723237044751591         
0.027673522765052503  2*0.027673522765052503  0.027673522765052503  -1.3435020629061745  0.45419615396638446 
这样就得到了滤波器系数组了
*/

#define IIR_SECTION 4                /*见前面设计输出为4个SOS块*/
static float iir_state[4*IIR_SECTION];/*历史状态缓冲区         */
const float iir_coeffs[5*IIR_SECTION]={
    
0.035416141341387819,2*0.035416141341387819,0.035416141341387819,1.7193929141691948,-0.8610574795347461,    0.031387100113383172,2*0.031387100113383172,0.031387100113383172,1.5237898734101736,-0.64933827386370635,    0.028873109331868367,2*0.028873109331868367,0.028873109331868367,1.4017399331200424,-0.51723237044751591,    0.027673522765052503,2*0.027673522765052503,0.027673522765052503,1.3435020629061745,-0.45419615396638446
};
static arm_biquad_casd_df1_inst_f32 S;
/*假定采样512个点*/
#define BUF_SIZE 512
#define PI 3.1415926
#define SAMPLE_RATE  32000 /*32000Hz*/
int main()
{
    
float raw[BUF_SIZE];
    
float raw_4k[BUF_SIZE];
    
float raw_out[BUF_SIZE];

    
float raw_noise[BUF_SIZE];
    
float raw_noise_out[BUF_SIZE];

    arm_biquad_casd_df1_inst_f32 S;
    FILE *pFile=fopen(
"./simulation.csv","wt+");
    
if(pFile==NULL)
    {
        
printf("file opened failed");
        
return -1;
    }

    
for(int i=0;i<BUF_SIZE;i++)
    {
/*模拟800Hz正弦幅度171,叠加幅度50随机噪声 */
raw[i] = 
0.5*1024.0/3*sin(2*PI*800*i/32000.0f)+rand()%50;
       raw_4k[i] = 
0.5*1024.0/3*sin(2*PI*4000*i/32000.0f);
       
/*模拟800Hz +4000Hz+随机噪声叠加输入 */
       raw_noise[i] = raw[i] + raw_4k[i];
    }
/*初始化滤波器,以及滤波*/
    arm_biquad_cascade_df1_init_f32(&S, IIR_SECTION, (
float *)&iir_coeffs[0], (float *)&iir_state[0]);
    arm_biquad_cascade_df1_f32(&S, raw, raw_out, BUF_SIZE);

    
for(int i=0;i<BUF_SIZE;i++)
    {
       
fprintf(pFile,"%f,",raw[i]);
    }

    
fprintf(pFile,"\n");
    
for(int i=0;i<BUF_SIZE;i++)
    {
        
fprintf(pFile,"%f,",raw_4k[i]);
    }
    
fprintf(pFile,"\n");
    
for(int i=0;i<BUF_SIZE;i++)
    {
        
fprintf(pFile,"%f,",raw_out[i]);
    }

    
/*初始化滤波器,以及滤波*/
    arm_biquad_cascade_df1_init_f32(&S, IIR_SECTION, (
float *)&iir_coeffs[0], (float *)&iir_state[0]);
    arm_biquad_cascade_df1_f32(&S, raw_noise, raw_noise_out, BUF_SIZE);

    
fprintf(pFile,"\n");
    
for(int i=0;i<BUF_SIZE;i++)
    {
        
fprintf(pFile,"%f,",raw_noise[i]);
    }

    
fprintf(pFile,"\n");
    
for(int i=0;i<BUF_SIZE;i++)
    {
        
fprintf(pFile,"%f,",raw_noise_out[i]);
    }

    fclose(pFile);

    
return 0;
}

利用csv文件,将模拟数据存储,直接用excel打开,将行数据生成曲线图如下:

有兴趣也可以写个界面直接显示,甚至绘制出谱线图,做进一步分析。

  • 第一幅图,为800Hz信号混入随机噪声的波形

  • 第二幅图,为4000Hz信号,对假定系统为无用干扰信号

  • 第三幅图, 为800Hz 混入随机噪声过滤后,已经很好的还原有用信号频率

  • 第四幅图, 为800Hz信号混入随机噪声,同时叠加4000Hz干扰的波形,对系统而言,从时域中,明显可见,有用信号已经完全扭曲

  • 第五幅图,为800Hz信号混入随机噪声,同时叠加4000Hz干扰的输入,经过该低通滤波器后的波形,与第三幅图基本一样,已经非常好的滤除了干扰信号。

总结

  • IIR滤波器在线性时不变系统中可以很好的解决工程中一般噪声问题

  • 如果需要设计带通、高通滤波器其步骤基本类似,只是滤波器的参数以及SOS块个数可能不一样而已

  • 需要提醒的时,IIR的相频响应不线性,如果系统对相频响应有严格要求,就需要采用其他的数字滤波器拓扑形式了

  • 实际应用中,如果阶数不高时,现在算力强劲的单片机或者DSP以及可以直接使用浮点处理。

  • 如果对处理速度有严格的实时要求,需要在极短时间进行滤波处理,可以考虑降低阶数,或采用定点IIR滤波算法实现。也或者将文中函数进行汇编级优化。

最近开的号,没有留言功能,设置了小程序留言功能,欢迎点下面进行留言讨论。

点击留言/查看留言

END


本文授权转载自公众号“嵌入式客栈”,作者:逸珺
嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 94浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 98浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 71浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 90浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 81浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 91浏览
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 84浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 55浏览
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 77浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 93浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 123浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 119浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦