盘点模拟噪声分析的n个误区

面包板社区 2020-03-28 00:00

噪声是模拟电路设计的一个核心问题,它会直接影响能从测量中提取的信息量,以及获得所需信息的经济成本。遗憾的是,关于噪声有许多混淆和误导信息,可能导致性能不佳、高成本的过度设计或资源使用效率低下。今天我们就聊聊关于模拟设计中噪声分析的11个由来已久的误区。

误区一

降低电路中的电阻值总是能改善噪声性能

噪声电压随着电阻值提高而增加,二者之间的关系已广为人知,可以用约翰逊噪声等式来描述:

erms为均方根电压噪声

k为玻尔兹曼常数

T为温度(单位为K)

R为电阻值,B为带宽


这让许多工程师得出结论:为了降低噪声,应当降低电阻值。虽然这常常是正确的,但不应就此认定它是普遍真理,因为在有些例子中,较大的电阻反而能够改善噪声性能。


在大多数情况下,测量电流的方法是让它通过一个电阻,然后测量所得到的电压。根据欧姆定律V = I ×R,产生的电压与电阻值成正比,但正如上式所示,电阻的约翰逊噪声与电阻值的平方根成正比。由于这个关系,电阻值每提高一倍,信噪比可提高3dB。在产生的电压过大或功耗过高之前,此趋势一直是正确的。


误区二

所有噪声源的噪声频谱密度可以相加;

带宽可以在最后计算时加以考虑。

将多个噪声源的噪声频谱密度加总(电压噪声源按平方和开根号),而不分别计算各噪声源的rms噪声,可以节省时间,但这种简化仅适用于各噪声源看到的带宽相同的情况。如果各噪声源看到的带宽不同,简单加总就变成一个可怕的陷阱。

图1. 使用rms噪声而不是频谱密度进行噪声计算的理由


图1显示了过采样系统中的情况。从噪声频谱密度看,系统总噪声似乎以增益放大器为主,但一旦考虑带宽,各级贡献的rms噪声其实非常相近。


误区三

手工计算时必须包括每一个噪声源

设计时有人可能忍不住要考虑每一个噪声源,但设计工程师的时间是宝贵的,这样做在大型设计中会非常耗时。全面的噪声计算最好留给仿真软件去做。


不过,设计人员如何简化设计过程需要的手工噪声计算呢?答案是忽略低于某一阈值的不重要噪声源。如果一个噪声源是主要噪声源(或任何其他折合到同一点的噪声源)的 1 / 5 erms 值,其对总噪声的贡献将小于2%,可以合理地予以忽略。设计人员常会争论应当把该阈值选在哪里,但无论是 1 / 3 、 1 / 5 还是 1 / 10 (分别使总噪声增加5%、2%和0.5%),在设计达到足以进行全面仿真或计算的程度之前,没必要担心低于该阈值的较小噪声源。


误区四

应挑选噪声为ADC  1 / 10 的ADC驱动器

模数转换器(ADC)数据手册可能建议利用噪声为ADC 1 / 10 左右的低噪声ADC驱动放大器来驱动模拟输入。但是,这并非总是最佳选择。在一个系统中,从系统角度权衡ADC驱动器噪声常常是值得的。


首先,如果系统中ADC驱动器之前的噪声源远大于ADC驱动器噪声,那么选择超低噪声ADC驱动器不会给系统带来任何好处。换言之,ADC驱动器应与系统其余部分相称。


其次,即使在只有一个ADC和一个驱动放大器的简单情况下,权衡噪声并确定其对系统的影响仍是有利的。通过具体数值可以更清楚地了解其中的理由。


考虑一个系统采用16位ADC,其SNR值相当于100 µV rms噪声,用作ADC驱动器的放大器具有µV rms噪声。按和方根加总这些噪声源,得到总噪声为100.5 rms,非常接近ADC单独的噪声。可以考虑下面两个让放大器ADC更为平衡的方案,以及它们对系统性能的影响:


如果用似的18位ADC代替16位ADC,前者的额定SNR相当于40 µV rms声,则总噪声变为41 µV rms。


或者,如果保留16位ADC,但更低功耗的放大器代替上述驱动器,该放大器贡献30 µV rms声,则噪声变为104 µV rms。


就系统性能而言,以上两种方案之一可能是比原始组合更好的选择。关键是要权衡利弊以及其对系统整体的影响。


误区五

直流耦合电路中必须始终考虑1/f噪声

1/f噪声对超低频率电路是一大威胁,然而,许多直流电路的噪声是以白噪声源为主,1/f噪声对总噪声无贡献,因而不用计算1/f噪声。


为了弄清这种效应,考虑一个放大器(其1/f噪声转折频率fnc为10 Hz)。对于各种带宽,计算10秒采集时间内包含和不含1/f噪声两种情况下的电路噪声,以确定不考虑1/f噪声的影响。其中宽带噪声为:

当带宽为fnc 的100倍时,宽带噪声开始占主导地位;


当带宽超过fnc的1000倍时,1/f噪声微不足道。


现代双极性放大器可以具有比10 Hz低很多的噪声转折频率,零漂移放大器则几乎完全消除了1/f噪声。


表1. 1/f 噪声影响与电路带宽的关系示例


误区六

因为1/f噪声随着频率降低而提高,

所以直流电路具有无限大噪声。

虽然直流对电路分析是一个有用的概念,但真实情况是,如果认为直流是工作在0 Hz,那么实际上并不存在这样的事情。随着频率越来越低,趋近0 Hz,周期会越来越长,趋近无限大。这意味着存在一个可以观测的最低频率,哪怕电路在理论上是直流响应。该最低频率取决于采集时长或孔径时间,也就是观测器件输出的时长。如果一名工程师开启器件并观测输出100秒,则其能够观测到的最低频率伪像将是0.01 Hz。这还意味着,此时可以观测到的最低频率噪声也是0.01 Hz。


现在通过一个数值例子来展开说明,考虑一个DC至1 kHz连续监控其输出。如果在前100秒观测到电路中一定量的1/f噪声,从0.01 Hz至1 kHz(5个十倍频程的频率),则在30年(约1nHz,12个十倍频程)中观测到的噪声量可计算为:

或者说比前100秒观测到的噪声多55%。这种增加几乎没有任何意义,即使考虑最差情况——1/f噪声持续增加到1 nHz(目前尚无测量证据)——也是如此。


理论上,如果没有明确定义孔时间,1/f噪声可以计算到一个等于电路寿命倒数的频率。实践中,电路在如此长时间内的偏差以老化效应和长期漂移为而不是1/f噪声。许多工程师为直流电路的噪声计算设定0.01 或1 mHz之类的最低频率,以使计算切合实际。

误区七

噪声等效带宽会使噪声倍增

噪声等效带宽(NEB)对噪声计算是一个很有用的简化。由于截止频率以上的增益不是0,某些超出电路带宽的噪声会进入电路中。NEB是计算的理想砖墙滤波器的截止频率,它会放入与实际电路相同的噪声量。NEB大于–3 dB带宽,已针对常用滤波器类型和阶数进行计算。


对于单极点低通滤波器,它是–3dB带宽的1.57倍,写成公式就是:

然而,关于应把该乘法因数放在噪声公式中的何处,似乎一直存在混淆。请记住,NEB调节的是带宽,而非噪声,因此应在根号下面,如下式所示:


误区八

电压噪声最低的放大器是最佳选择

选择运算放大器时,电压噪声常常是设计人员唯一考虑的噪声规格。其实电流噪声同样不能忽略。除非在有输入偏置电流补偿等特殊情况下,电流噪声通常是输入偏置电流的散粒噪声:


电流噪声通过源电阻转换为电压,因此,如果放大器输入端前面有一个大电阻,那么电流噪声对系统噪声的贡献可能大于电压噪声。电流噪声会成为问题的典型情况是使用低噪声运算放大器且其输入端串联一个大电阻时。


考虑低噪声运算放大器ADA4898-1,其输入端串联一个10 kΩ电阻。ADA4898-1的电压噪声为:

10 kΩ电阻的噪声为:

 电流噪声乘以10 kΩ电阻等于:

这是系统中的最大噪声源。在类似这种电流噪声占主导地位的情况下,常常可以找到电流噪声较低的器件,从而降低系统噪声;对精密放大器尤其如此,不过高速FET输入运算放大器对高速电路也可能有帮助。例如,若不选择ADA4898-1(从而得不到电压低噪声的好处),可以选择AD8033或ADA4817-1等JFET输入放大器。


误区九

在第一级提供大部分增益可实现最佳噪声性能

为了实现更好的噪声性能,常常建议在第一级提供增益,这是对的,因为信号会比随后各级的噪声要大。然而,这样做的缺点是会削弱系统能够支持的最大信号。某些情况下,与其在第一级提供很大一部分增益(虽然这样可以提高测量灵敏度,但会限制动态范围),不如限制第一级提供的增益,并用高分辨率进行数字化处理,使灵敏度和动态范围都达到最大。


误区十

给定阻值时,所有类型电阻的噪声相同

电阻的约翰逊噪声非常重要,以至于我们需要一个简单的公式来计算某一电阻在某一温度下的噪声。然而,约翰逊噪声是电阻中可以观测到的最小噪声,而且并非所有类型的电阻都有同等噪声。


还有过量噪声,它是电阻中1/f噪声的来源之一,与电阻类型密切相关。过量噪声(有时候也误称为电流噪声)与电流在非连续介质中流动的方式有关。它被规定为噪声指数(NI),单位为dB,以每十倍频程1 µV rms/V dc 为基准。


这意味着:如果一个0 dB NI的电阻上有1 V dc 电压,则给定十倍频程时的过量噪声为1 µV rms。碳和厚膜电阻的NI最高,可能高达+10 dB左右,在信号路径的噪声敏感部分中最好避免使用。薄膜电阻一般要好得多,约为–20 dB;金属箔和绕线电阻可以低于–40 dB。


误区十一

给定足够长的采集时间,

均值法可将噪声降至无限小。

一般认为均值法可将噪声降低均值数的平方根倍。这在一定条件下是成立的,即NSD必须保持平坦。然而,在1/f范围内和其他几种情况下,这种关系不成立。考虑在一个以恒定频率fs采样的系统中使用均值法,对n个样本求均值并进行1/n抽取,返回m个抽取样本。取n个平均值会将抽取后的有效采样速率变为fs/n,系统看到的有效最大频率降低n倍,白噪声降低√n倍。然而,获得m个样本的时间也会延长n倍,因此系统可以看到的最低频率也会降低n倍(记住,没有0 Hz这种事)。


取的均值数越多,频段上的这些最大和最小频率就越往下移。一旦最大和最小频率均在1/f范围内,总噪声便仅取决于这些频率之比,再提高均值数对降低噪声没有进一步的好处。同样的道理也适用于多斜率等积分ADC的长积分时间。除了数学上的限制以外,还存在其他实际限制。


若量化噪声是主要噪声源,使得直流输入电压下的ADC输出为一个无闪烁的恒定码,则任何数量的均值都会返回同一个码。


来源:ADI

推荐阅读:

  • 终于有人把EMC知识总结得如此清晰 !

  • 磁珠虽小,神通广大——最全的磁珠知识总结

  • 电阻、电容、电感…这回终于讲齐了

  • 卷积的本质及物理意义,幽默、风趣的讲解,看完必有收获!

  • 高手经验:学电路原理,你得这么做

  • 如何避免MOS管过热烧毁?详细分析来了(附具体措施)

  • 设计三极管放大电路时应该注意哪些技巧?(通俗易懂)

  • 牢记这四句口诀 分分钟玩转三极管

  • 这么好的二极管知识,电子人都得懂

  • 无刷电机与有刷电机的区别,这样看一目了然!

  • 最有趣生动的方法讲解三极管(当年我的老师为啥不这样教?)


▼ 点击阅读原文,10万下载资料

面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论 (0)
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 148浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 251浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 236浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 201浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 205浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 191浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 205浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 173浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 178浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 189浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦