AAAI2022|传统GAN修改后可解释,并保证卷积核可解释性和生成图像真实性

OpenCV学堂 2022-06-14 16:01

点击上方↑↑↑OpenCV学堂”关注我

来源:公众号 机器之心  授权


本文介绍了中科院计算所、上海交通大学等机构在 AAAI 2022 上发表的关于可解释生成对抗网络(GAN)的工作。该工作提出了一种将传统 GAN 修改为可解释 GAN 的通用方法,使得 GAN 生成器中间层的卷积核可以学习到解耦的局部视觉概念(例如人脸的眼睛、鼻子和嘴巴等部分)。每个卷积核在生成不同图像时可以稳定地生成对应于相同视觉概念的图像区域。可解释 GAN 使得人们可以通过操纵层中相应卷积核的特征图来修改生成图像上的特定视觉概念,为 GAN 生成图像的可控编辑方法提供了一个新的角度。


  • 论文地址:https://www.aaai.org/AAAI22Papers/AAAI-7931.LiC.pdf
  • 作者单位:中国科学院计算技术研究所、上海交通大学、之江实验室

研究背景及研究任务

生成对抗网络(GAN)已经在生成高分辨率图像方面取得了巨大成功,而关于其可解释性的研究也在近年来引起了广泛关注。

在这一领域,如何令 GAN 学习出一个解耦的表征仍是一项重大挑战。所谓 GAN 的解耦表征,即该表征每个部分只影响生成图像的特定方面。此前关于 GAN 解耦表征的研究关注于不同的角度。

例如,在下图 1 中,方法 1 解耦了图像的结构和风格。方法 2 学习了图像中局部对象的特征。方法 3 学习了图像中属性的解耦特征,例如人脸图像的年龄属性和性别属性。然而,这些研究未能在 GAN 中为不同的视觉概念(例如人脸的眼睛、鼻子和嘴巴等部分)提供一个清晰且符号化的表征。

图 1:与其他 GAN 解耦表征方法的视觉对比

为此,研究者提出了一种将传统 GAN 修改为可解释 GAN 的通用方法,该方法确保生成器中间层中的卷积核可以学习到解耦的局部视觉概念。具体地,如下图 2 所示,与传统 GAN 相比,可解释 GAN 中间层中的每个卷积核在生成不同图像时始终代表一个特定的视觉概念,不同的卷积核则代表不同的视觉概念。

图 2:可解释 GAN 与传统 GAN 编码表征的视觉对比

建模方法

可解释 GAN 的学习应满足以下两个目标:卷积核的可解释性生成图像的真实性。 

  • 卷积核的可解释性:研究者希望中间层的卷积核能够自动学习有意义的视觉概念,而无需对任何视觉概念进行人工标注。具体来说,每个卷积核在生成不同图像时都应该稳定地生成对应于相同视觉概念的图像区域。不同的卷积核则应该生成对应于不同视觉概念的图像区域;
  • 生成图像的真实性:可解释 GAN 的生成器仍然能够生成逼真的图像。

为了确保目标层中卷积核的可解释性,研究者注意到当多个卷积核生成与某个视觉概念对应的相似区域时,它们通常联合代表了这一视觉概念。

因此,他们使用一组卷积核来共同表示一个特定的视觉概念,并使用不同组的卷积核来分别表示不同的视觉概念。

为了同时确保生成图像的真实性,研究者设计下述损失函数来将传统的 GAN 修改为可解释的 GAN。 

  • 传统 GAN 的损失:该损失用于确保生成图像的真实性;
  • 卷积核划分损失:给定生成器,该损失用于找到卷积核的划分方式,使得同一组中的卷积核生成相似的图像区域。具体地,他们使用高斯混合模型 (GMM) 来学习卷积核的划分方式,以确保每组中卷积核的特征图具有相似的神经激活;
  • 能量模型真实性损失:给定目标层卷积核的划分方式,强制同一组中的每个卷积核生成相同的视觉概念可能会降低生成图像的质量。为了进一步确保生成图像的真实性,他们使用能量模型来输出目标层中特征图的真实性概率,并采用极大似然估计来学习能量模型的参数;
  • 卷积核可解释性损失:给定目标层的卷积核划分方式,该损失用于进一步提升卷积核的可解释性。具体地,该损失会使得同一组中的每个卷积核唯一地生成相同的图像区域,而不同组的卷积核则分别负责生成不同的图像区域。

实验结果

在实验中,研究者分别定性和定量地评估了他们的可解释 GAN。

对于定性分析,他们将每个卷积核的特征图可视化,以评估卷积核在不同图像上所表示的视觉概念的一致性。

如下图 3 所示,在可解释 GAN 中,每个卷积核在生成不同图像时始终生成对应于相同视觉概念的图像区域,而不同的卷积核生成对应于不同视觉概念的图像区域。

图 3:可解释 GAN 中特征图的可视化

实验中还比较了每组卷积核的组别中心和卷积核之间的感受野的区别,如下图 4(a)所示。图 4(b)给出了可解释 GAN 中不同视觉概念对应卷积核的数目比例。图 4(c)则表明,当选择划分的卷积核组数不同时,组数越多的可解释 GAN 学习到的视觉概念越详尽。

图 4:可解释 GAN 的定性评估

可解释 GAN 还支持修改生成图像上特定的视觉概念。例如,可以通过交换可解释层中相应的特征图,来实现图像之间特定视觉概念的交互,即完成局部 / 全局换脸。

下图 5 给出了在成对图像之间交换嘴、头发和鼻子的结果。最后一列给出了修改后的图像和原始图像之间的差异。该结果表明,研究者的方法只修改了局部的视觉概念,而没有改变其他不相关的区域。

图 5:交换生成图片的特定视觉概念

此外,下图 6 还给出了他们的方法在交换整张人脸时的效果

图 6:交换生成图片的整张人脸

对于定量分析,研究者采用人脸验证实验来评估人脸交换结果的准确性。具体而言,给定一对人脸图像,将原始图像的人脸替换为源图像的人脸以生成修改后的图像。然后,测试修改后图像的人脸和源图像的人脸是否具有相同的身份。

下表 1 给出了不同方法人脸验证结果的准确性,他们的方法在身份保持方面优于其他的面部交换方法。

表 1:换脸身份的准确性评估

此外,实验中还评估了方法在修改特定视觉概念时的局部性。具体来说,研究者计算了 RGB 空间中原始图像和修改后图像之间的均方误差 (MSE),并以特定视觉概念的区域外 MSE 和区域内 MSE 的比值,作为局部性评估的实验指标。

结果如下表 2 所示,研究者的修改方法具有更好的局部性,即所修改视觉概念之外的图片区域变化较少。

表 2:修改视觉概念的局部性评估

更多的实验结果参见论文。

总结

本工作提出了一种通用方法,可以在无需任何视觉概念的人工标注下,将传统的 GAN 修改为可解释的 GAN。在可解释的 GAN 中,生成器中间层中的每个卷积核在生成不同图像时可以稳定地生成相同的视觉概念。

实验表明,可解释 GAN 还使得人们能够在生成的图像上修改特定的视觉概念,为 GAN 生成图像的可控编辑方法提供了一个新的角度。

[1] Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." Proceedings of the IEEE international conference on computer vision. 2017.

[2] Plumerault, Antoine, Hervé Le Borgne, and Céline Hudelot. "Controlling generative models with continuous factors of variations." International Conference on Learning Representations. 2019.

[3] Shen, Yujun, et al. "Interpreting the latent space of gans for semantic face editing." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

[4] Chen, Renwang, et al. "Simswap: An efficient framework for high fidelity face swapping." Proceedings of the 28th ACM International Conference on Multimedia. 2020.

[5] Li, Lingzhi, et al. "Advancing high fidelity identity swapping for forgery detection." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

[6] Nirkin, Yuval, Yosi Keller, and Tal Hassner. "Fsgan: Subject agnostic face swapping and reenactment." Proceedings of the IEEE/CVF international conference on computer vision. 2019.

[7] Collins, Edo, et al. "Editing in style: Uncovering the local semantics of gans." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

[8] Suzuki, Ryohei, et al. "Spatially controllable image synthesis with internal representation collaging." arXiv preprint arXiv:1811.10153 (2018).


OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 48浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 71浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦