原创聚合|Linux阅码场原创精华文章汇总与征稿

Linux阅码场 2022-06-14 08:00
阅码场近期征稿选题


性能优化案例:

1 内存

2 功耗

3 调度

4 存储

5 FWK

安全类:

1 安全启动和远程证明原理

2 tee原理以及应用分析

3 权限最小化管理以及沙箱技术

4 mac技术:selinux原理

5 ids入侵检测技术(包括rootkit检测等)结合AI技术

6 IMA和dim kernel原理

7 隐私计算

8 DRM



阅码场用户选题:


1 内核对cache/tlb的配置刷新及刷新时机
2 深入理解Bcache
SMP和超线程
 cache一致性协议与False Sharing
处理器微架构及IPCCPI
NUMA
MMUIOMMU技术
wayland,DRM,hugetlb,cgroupbcache,__attribute__,tee, gdb,rtos,进程调度,shell编程,wayland,mountautosuspend,RCU,CFI,中断。
(以上为用户在后台提交的关键词,欢迎投稿)


原创精华文章


Linux glibc 内存站岗问题及解决方法

持续更新,敬请期待!(最后更新日期2022.04.19)


Linux学习方法:

宋宝华:迭代螺旋法——关于Linux学习方法的血泪建议
宋宝华:纪念金庸先生——程序员的武侠世界

甄建勇:芯片架构方法学

如何阅读Linux内核的源码

总是选择难的那条路




Linux任督二脉之进程管理


郭健:Linux进程调度技术的前世今生之“前世”

郭健:Linux进程调度技术的前世今生之“今生”
深入理解Linux内核进程上下文切换

漫话Linux之“躺平”: IDLE 子系统

宋宝华:是谁关闭了Linux抢占,而抢占又关闭了谁?

同样学习Linux, 为何差别这么大? - 论打通Linux进程和内存管理任督二脉

宋宝华: 僵尸进程的成因以及僵尸可以被“杀死”吗?

宋宝华:关于Linux进程优先级数字混乱的彻底澄清

有关微内核OS史上最透彻一篇 - 写于华为鸿蒙发布一周之际

被神话的Linux, 一文带你看清Linux在多核可扩展性设计上的不足

fork三部曲:Linux fork那些隐藏的开销

fork三部曲:Unix/Linux fork前传

fork三部曲:Fork三部曲之clone的诞生

理解Linux内核抢占模型(最透彻一篇)

大碰撞!当Linux多线程遭遇Linux多进程

宋宝华:在实时操作系统里面随便怎么写代码都能硬实时吗?

Linux中父进程为何要苦苦地知道子进程的死亡原因?

定位并行应用程序中的可伸缩性问题(最透彻一篇)

宋宝华:谈一谈Linux让实时/高性能任务独占CPU的事

彭伟林:Linux schedule 之 Cgroupnew

彭伟林:Linux schedule 调度算法new


Linux任督二脉之内存管理


宋宝华:CPU是如何访问到内存的?--MMU最基本原理

宋宝华:那些年你误会的Linux DMA(关于Linux DMA ZONE和API最透彻的一篇)

围绕HugeTLB的极致优化

Linux glibc 内存站岗问题及解决方法

宋宝华:网上坑爹的Linux资料汇总之内存管理

宋宝华:swappiness=0究竟意味着什么?

宋宝华:kvmalloc ——倚天剑屠龙刀两大神器合体?

宋牧春:多图详解Linux内存分配器slub

宋牧春:Linux内核slab内存的越界检查——SLUB_DEBUG
宋宝华:世上最好的共享内存(Linux共享内存最透彻的一篇)

宋宝华:论Linux的页迁移(Page Migration)完整版

郭健:Linux内存逆向映射(reverse mapping)技术的前世今生
谢宝友:深入理解Linux RCU之一——从硬件说起

谢宝友:深入理解Linux RCU:从硬件说起之内存屏障

廖威雄: 学习Linux必备的硬件基础一网打尽

为什么内核访问用户数据之前,要做access_ok?
Linux的page cache使用情况/命中率查看和操控

Linux内核如何私闯进程地址空间并修改进程内存

内存泄漏(增长)火焰图

宋宝华:Linux为什么一定要copy_from_user ?

linux内核写时复制机制源代码解读

深入剖析Linux内核反向映射机制

宋宝华:深入理解cache对写好代码至关重要(上)

用户态进程如何得到虚拟地址对应的物理地址?

内存管理的另辟蹊径 - 腾讯云虚拟化开源团队为内核引入全新虚拟文件系统(dmemfs)

宋宝华:Linux内核中用GFP_ATOMIC申请内存究竟意味着什么?

宋宝华:ARM64 Linux内核页表的块映射

程磊:Linux OOM 基本原理解析(new


系统调试调优


推荐Linux性能分析的一篇论文和两本书

宋宝华:深入理解cache对写好代码至关重要(上)

宋宝华:关于Ftrace的一个完整案例

(重磅原创)冬之焱: 谈谈Linux内核的栈回溯与妙用

阿里杨勇:浅谈 Linux 高负载的系统化分析

Linux TraceEvent - 我见过的史上最长宏定义

大神如何不择手段,最快最精准打击Linux网络问题?

揭露内核黑科技 - 热补丁技术真容

Linux pstore 实现自动“抓捕”内核崩溃日志

解决Linux内核问题实用技巧之-dev/mem的新玩法

吴章金:如何创建一个*可执行*的共享库

吴章金: 深度剖析 Linux共享库的“位置无关”实现原理

吴章金:通过操作 Section 为 Linux ELF 程序新增数据

吴章金:实例解析 Linux C 语言程序之变量类型

解决Linux内核问题实用技巧之 - Crash工具结合/dev/mem任意修改内存

解决Linux内核问题实用技巧之-dev/mem的新玩法

宋宝华:火焰图:全局视野的Linux性能剖析

宋宝华:当Linux内核遭遇鲨鱼—kernelshark

孟冉: Linux火焰图的数据流程分析

宋宝华:用off-cpu火焰图进行Linux性能分析

宋宝华:用eBPF/bcc分析系统性能的一个简单案例

朱辉(茶水):Linux Kernel iowait 时间的代码原理

朴英敏:用crash工具分析Linux内核死锁的一次实战

宋宝华:Kernel Oops和Panic是一回事吗?

廖威雄: 利用__attribute__((section()))构建初始化函数表与Linux内核init的实现

宋宝华:关于Linux编译优化几个必须掌握的姿势

燕青:Unixbench 测试套件缺陷深度分析

宋宝华:一个简单的python脚本画出Linux程序/库依赖图

宋宝华:一个简单的python脚本看透Linux程序对库的依赖

Linux 系统性能评测基准系统配置及其原理

精品译文系列:Linux多线程应用性能分析

Linux 系统性能评测基准系统配置及其原理

李浩: 再谈 volatile 关键字

闻茂泉:系统性能监控与分析的工程化实践之路(new

彭伟林:Ftrace Hook (Linux内核热补丁) 详解new

彭伟林:BPF内核实现详解new

李棒:深入理解内存泄漏检查kmemleaknew

彭伟林:手把手入门火焰图(new

李棒:浅谈 ARM64 基于硬件 tag 的 KASAN(new

彭伟林:使用ftrace分析函数性能(new

彭伟林:Linux ftrace 1.3、tracer (function、function_graph、irq_off)(new

徐庆伟:Linux Tracing System浅析和eBPF开发经验分享(new

宋赛:一文读懂eBPF的前世今生(new

彭伟林:深入理解Linux ftrace 之 trace event(new

龙城赤子:一个内核oops问题的分析及解决new

张彦飞:深入理解Linux网络之网络性能优化建议(new


文件系统和IO


宋宝华:Linux文件读写(BIO)波澜壮阔的一生

刘正元: Linux 通用块层之IO合并

黄伟亮:ext4文件系统之裸数据的分析实践

黄伟亮:探秘Linux的块设备和根

打通IO栈:一次编译服务器性能优化实战

吴锦华/明鑫: 用户态文件系统(FUSE)框架分析和实战

实例演绎Unix/Linux的"一切皆文件"思想

300来行代码带你实现一个能跑的最小Linux文件系统

宋宝华:论一切都是文件之匿名inode


设备驱动


宋宝华:让天堂的归天堂,让尘土的归尘土——谈Linux的总线、设备、驱动模型

宋宝华:Linux设备驱动框架里的设计模式之——模板方法(Template Method)

桃李春风一杯酒,江湖夜雨十年灯 - 老兵夜话DPDK

Linux Tcp 内核协议栈学习三种武器 之 Packet Drill

宋宝华:Linux内核编程广泛使用的前向声明(Forward Declaration)

宋宝华:Linux设备与驱动的手动解绑与手动绑定

用Linux内核的瑞士军刀-eBPF实现socket转发offload

宋牧春:Linux设备树文件结构与解析深度分析(1)

宋牧春:Linux设备树文件结构与解析深度分析(2)
何晔:当ZYNQ遇到Linux Userspace I/O(UIO)

邵国际: C 语言对象化设计实例 —— 命令解析器

宋宝华:关于ARM Linux原子操作的实现

罗玉平:关于ARM Linux原子操作的底层支持

Linux的中断可以嵌套吗?

ARM Linux的中断服务程序工作在ARM的IRQ模式吗?

宋宝华:几个人一起抢spinlock,到底谁先抢到?

宋宝华:为什么Linux内核常常用unsigned long来代替指针

孙雷: 虚拟化之——virtio-net基础篇

Jack:深入理解VFIO驱动框架(new

尹忠凯:dma-buf学习分享(new


用户态编程


一文读懂Linux进程、进程组、会话、僵尸

骆小刚:Linux后台服务启动方式systemd、daemon、nohup大比拼

郝健:Linux下服务程序启动管理方式的分析与总结

宋宝华:一图理解终端、会话、 进程组、进程关系

宋宝华:让Linux的段错误(segmentation fault)不再是一个错误


云和虚拟化


宋宝华:Docker 最初的2小时(Docker从入门到入门)

KVM最初的2小时——KVM从入门到放弃(修订版)

Leo Hou:深入理解SR-IOV和IO虚拟化(new

黄鹏:报文ACL算法之HyperSplit Tree建树性能优化new

黄鹏:DPDK代码级调优之__rte_cache_alignednew


Linux内核月报


Linux阅码场 - Linux内核月报(2020年06月)

Linux阅码场 - Linux内核月报(2020年07月)

Linux阅码场 - Linux内核月报(2020年08月)

Linux阅码场 - Linux内核月报(2020年09月)

Linux阅码场 - Linux内核月报(2020年10月)


Linuxer 人生


宋宝华:公元1024年Linux内核的尘封往事

经历≠经验,码农如何工作10年依然是菜鸟?

陈莉君教授: 回望踏入Linux内核之旅

魏永明:MiniGUI的涅槃重生之路

谢宝友: 手把手教你给Linux内核发patch


ARM 架构


周贺贺:深入学起Cache系列 3 : 多核多Cluster多系统之间的缓存一致性(new

周贺贺:深入学习Cache系列 2: Cache是如何工作的?概念以及工作过程(new

周贺贺:深入学习Cache系列 1: 带着几个疑问,从Cache的应用场景学起(new

周贺贺:armv8/armv9不同特权程序之间的跳转模型(new

周贺贺:armv8/armv9中断系列详解-中断示例展示(new

周贺贺:armv8-armv9中断系列详解-硬件基础篇(new

周贺贺:armv8-armv9 MMU深度学习(new

周贺贺:一文了解Linux Kernel中密码学算法的设计与应用(new

周贺贺:ATF快速扫盲(Quick Start)(new

周贺贺:Linux Kernel中非对称密码算法的实现(new

实时系统与性能


王顺刚:xenomai3.1+linux构建linux实时操作系统-基于X86_64和armnew

王顺刚:xenomai内核解析之嵌入式实时linux概述new

彭伟林:Linux实时化与硬实时RTOS综述new

邓世强:浅谈Linux内核的实时性优化(new

王顺刚:xenomai内核解析--双核系统调用(一)(new

王顺刚:xenomai内核解析--双核系统调用(二)--应用如何区分xenomai/linux系统调用或服务(new

王顺刚:xenomai内存池管理(new

王顺刚:有利于提高xenomai 实时性的一些配置建议(new


系统信息安全


彭伟林:CFI/CFG 安全防护原理详解(new

书意:sel4源码解析(二) - CSpace(new

书意:sel4源码解析(一) - sel4内核对象(new


芯片与系统架构


甄建勇:CXL:为缓存一致性而生的新一代总线

zheng Li:从多核到众核处理器


平台与硬件


彭伟林:深入理解EtherCATnew

Leo:机械按键扫描——数字逻辑有限状态机思想在软件中的实现(new

程晨:Arduino Portenta X8新开发模式支持Docker(new






扫描/识别二维码关注"Linux阅码场" 

如果您觉得不错,请转发转发转发!

或者随手点个“在看”吧~

Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论 (0)
  • 贞光科技代理的品牌-光颉科技高精密薄膜电阻凭借0.01%的超高精度,在AI服务器电源模块中实现了精确电压分配、优化功率因数和减少热损耗,显著提升系统能效和可靠性。在当今的数字时代,人工智能(AI)服务器已成为数据中心的核心。随着AI应用的激增,服务器的性能和能效需求也在不断提高。电源模块作为服务器的关键组件,其性能直接影响整个系统的效率和可靠性。本文将探讨光颉科技高精密薄膜电阻,特别是其0.01%的精度,如何在AI服务器电源模块中提升能效。电源模块在AI服务器中的重要性电源模块负责将输入电源转换
    贞光科技 2025-03-20 16:55 56浏览
  • 如同任何对我们工作方式的改变,新的工作方式必然会遇到许多必须面对的挑战。如果不解决组织在实施精益六西格玛过程中面临的障碍以及如何克服它们的问题,那么关于精益六西格玛的讨论就不算完整。以下列举了组织在成功实施精益六西格玛时常见的几个障碍,以及克服它们的方法:1)对精益六西格玛方法论缺乏理解。抵触情绪通常源于对精益六西格玛方法论的不了解,以及不相信它能真正发挥作用。这种情况在所有层级的人员中都会出现,包括管理层。虽然教育培训可以帮助改善这一问题,但成功的项目往往是打消疑虑的最佳方式。归根结底,这是一
    优思学院 2025-03-20 12:35 50浏览
  • 随着自动驾驶技术的快速发展,仿真软件在开发过程中扮演着越来越重要的角色。仿真传感器与环境不仅能够加速算法验证,还能在安全可控的条件下进行复杂场景的重复测试。本文将分享如何利用自动驾驶仿真软件配置仿真传感器与搭建仿真环境,并对脚本进行修改,优化和验证4个鱼眼相机生成AVM(Around View Monitor)合成数据的流程。通过这一过程,一同深入体验仿真软件的应用潜力!一、流程概述AVM是一种通过多相机实现车辆周围环境的实时监控和显示的系统,广泛应用于自动驾驶和高级驾驶辅助系统(ADAS)的环
    康谋 2025-03-20 09:57 31浏览
  • 故障现象 一辆2024款路虎发现运动版车,搭载2.0 L发动机,累计行驶里程约为5 000 km。车主反映,使用遥控器无法解锁车门,随后使用机械钥匙打开车门,踩下制动踏板,按压起动按钮,仪表盘提示“将智能钥匙放在图示位置,然后按下起动按钮”(图1)。 图1 故障车的仪表盘提示采用上述应急起动方法,发动机能够起动着机。上述故障现象已出现过多次,过一段时间又会恢复正常,这次故障出现要求将车辆拖入店内进行彻底检修。 故障诊断 车辆进店后进行试车,车辆一切功能又恢复正常。经过反复测试
    虹科Pico汽车示波器 2025-03-20 10:17 42浏览
  • 4月8-11日,第91届中国国际医疗器械博览会(CMEF)将在国家会展中心(上海)举办。这场全球瞩目的医疗科技盛宴以“创新科技,智领未来”为主题,旨在全方位展示医疗科技的最新成果,与来自全球的行业同仁一道,为全球医疗健康领域带来一场科技与商贸交融的产业“盛宴”。飞凌嵌入式作为专业的嵌入式技术解决方案提供商,一直致力于为医疗器械行业提供丰富的、高可靠性的嵌入式硬件主控解决方案。届时,飞凌嵌入式将为来自全球的观众带来适用于IVD、医疗影像、生命体征监测等医疗设备的嵌入式板卡、显控一体屏产品以及多款动
    飞凌嵌入式 2025-03-20 11:46 29浏览
  • 家电“以旧换新”政策的覆盖范围已从传统的八大类家电(冰箱、洗衣机、电视、空调、电脑、热水器、家用灶具、吸油烟机)扩展至各地根据本地特色和需求定制的“8+N”新品类。这一政策的补贴再叠加各大电商平台的优惠,家电销售规模显著增长,消费潜力得到进一步释放。晶尊微方案为升级换代的智能家电提供了高效且稳定的触摸感应和水位检测功能,使得操作更加便捷和可靠!主要体现在:水位检测1健康家电:养生壶、温奶器、加湿器的缺水保护安全2清洁电器:洗地机、扫地机器人的低液位和溢液提醒3宠物家电:宠物饮水机的缺水提醒/满水
    ICMAN 2025-03-20 15:23 58浏览
  • 本文内容来自微信公众号【工程师进阶笔记】,以工程师的第一视角分析了飞凌嵌入式OK3506J-S开发板的产品优势,感谢原作者温老师的专业分享。前两周,有一位老朋友联系我,他想找人开发一款数据采集器,用来采集工业现场的设备数据,并且可以根据不同的业务场景,通过不同的接口把这些数据分发出去。我把他提的需求总结了一下,这款产品方案大概有以下功能接口,妥妥地一款工业网关,在网上也能找到很多类似的产品方案,为啥他不直接买来用?再跟朋友深入地聊了一下,他之所以联系我,是因为看到我在公众号介绍过一款由飞凌嵌入式
    飞凌嵌入式 2025-03-20 11:51 62浏览
  • 为有效降低人为疏失导致交通事故发生的发生率,各大汽车制造厂及系统厂近年来持续开发「先进驾驶辅助系统」ADAS, Advanced Driver Assistance Systems。在众多车辆安全辅助系统之中,「紧急刹车辅助系统」功能(AEB, Autonomous Emergency Braking)对于行车安全性的提升便有着相当大的帮助。AEB透过镜头影像模块与毫米波雷达感测前方目标,可在发生碰撞前警示或自动刹车以降低车辆损伤以及乘员伤害。面临的挑战以本次分享的客户个案为例,该车厂客户预计在
    百佳泰测试实验室 2025-03-20 15:07 49浏览
  • 流感季急诊室外彻夜排起的长队,手机屏幕里不断闪烁的重症数据,深夜此起彼伏的剧烈咳嗽声——当病毒以更狡猾的姿态席卷全球,守护健康的战争早已从医院前移到每个人的身上。在医学界公认的「72小时黄金预警期」里,可穿戴设备闪烁的光芒正穿透皮肤组织,持续捕捉血氧浓度、心率变异性和体温波动数据。这不是科幻电影的末日警报,而是光电传感器发出的生命预警,当体温监测精度精确到±0.0℃,当动态血氧检测突破运动伪影干扰……科技正在重新定义健康监护的时空边界。从智能手表到耳机,再到智能戒指和智能衣物,这些小巧的设备通过
    艾迈斯欧司朗 2025-03-20 15:45 69浏览
  • PCIe 5.0应用环境逐步成形,潜在风险却蠢蠢欲动?随着人工智能、云端运算蓬勃发展,系统对于高速数据传输的需求不断上升,PCI Express(PCIe)成为服务器应用最广的传输技术,尤其在高效能运算HPC(High Performance Computing)及AI服务器几乎皆导入了最新的PCIe 5.0规格,使得数据传输的双向吞吐量达到了128GB/s,让这两类的服务器能够发挥最大的效能。不过随着PCIe 5.0的频率达到16GHz,PCB板因为高频而导致讯号衰减加剧的特性,使得厂商面临很
    百佳泰测试实验室 2025-03-20 13:47 48浏览
  • 在电子制造领域,PCB(印刷电路板)的使用寿命直接决定了产品的长期稳定性和可靠性。捷多邦作为全球领先的PCB制造商,始终将质量放在首位,致力于为客户提供高可靠性、高性能的PCB解决方案。以下是捷多邦如何确保PCB使用寿命超过20年的核心技术与优势。 1. ​高品质原材料:从源头保障耐用性捷多邦采用国际认证的优质基材,如FR4、高频材料和高TG板材,确保PCB在高温、高湿等极端环境下的稳定性。通过严格的原材料筛选和入库检验,捷多邦从源头控制质量,避免因材料缺陷导致的失效问题。 
    捷多邦 2025-03-20 11:22 81浏览
  •         在当今电子设备高度集成的时代,电路保护显得尤为重要。TVS管(瞬态电压抑制二极管)和压敏电阻作为一种高效的电路保护器件,被广泛应用于各种电子设备中,用以吸收突波,抑制瞬态过电压,从而保护后续电路免受损坏。而箝位电压,作为TVS管和压敏电阻的核心参数之一,直接关系到其保护性能的优劣。箝位电压的定义        箝位电压指瞬态保护器件(如TVS二极管、压敏电阻)在遭遇过压时,将电路电压限制在安全范围内的
    广电计量 2025-03-20 14:05 45浏览
  • 近日,保定飞凌嵌入式技术有限公司(以下简称“飞凌嵌入式”)携手瑞芯微电子股份有限公司(以下简称“瑞芯微”)正式加入2025年全国大学生嵌入式芯片与系统设计竞赛(以下简称“嵌入式大赛”),并在应用赛道中设立专属赛题。本次嵌入式大赛,双方选用基于瑞芯微RK3588芯片设计的ELF 2开发板作为参赛平台,旨在通过此次合作,促进产教融合,共同推动嵌入式系统创新人才的培养。全国大学生嵌入式芯片与系统设计竞赛是一项A类电子设计竞赛,同时也是被教育部列入白名单的赛事,由中国电子学会主办,是学生保研、求职的公认
    飞凌嵌入式 2025-03-20 11:53 41浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,凭借AS1163独立智能驱动器(SAID)成为中国领先的智能集成系统产品汽车制造商宁波福尔达智能科技股份有限公司(“福尔达”)环境动态照明应用的关键供应商。此次合作标志着汽车技术发展的一个重要时刻,充分展现了AS1163在优化动态照明应用系统成本方面的多功能性和先进性能。该产品支持传感器集成,拥有专为车顶照明设计的超薄外形,并能提升车内照明系统的性能。AS1163是一款先进的智能LED驱动器,能够与开放系统协议(OSP)网络无缝
    艾迈斯欧司朗 2025-03-20 14:26 38浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦