有趣的交互式傅里叶变换网站

TsinghuaJoking 2020-03-25 00:00
网站的BANNER

傅里叶变换是一种在各个领域都经常使用的数学工具。这个网站将为你介绍傅里叶变换能干什么,为什么傅里叶变换非常有用,以及你如何利用傅里叶变换干漂亮的事。就像下面这样:

漫画与谐波分解

我将为你解释这个动画是如何工作的,沿途为你详细地解释傅里叶变换!

这次旅途结束后,你将会掌握下面这些知识:

  • 什么是傅里叶变换
  • 傅里叶变换的一些实际用途
  • 傅立叶变换的一些很酷的用法(虽然有些没有实际意义)

我们现在暂时不提那些复杂的数学公式。傅里叶背后的数学原理十分有趣,但最好还是先从它的实际应用开始,以及为什么要使用它。如果你想了解更多,下面提供了一些进一步的阅读建议!

傅里叶变换是什么

简而言之,傅里叶变换把一个输入信号分解成一堆正弦波的叠加。就像大多数数学方法一样,这个名字来自一个名叫傅立叶的人。

让我们从一些简单的例子开始,然后继续前进。首先,我们来看看什么是波 —— 波随着时间的推移,一直按照某一规律变化。

这是一个波的例子:

周期波形示例

这个波可以分解为两个正弦波的叠加。也就是说,当我们将两个正弦波相加时,就会得到原来的波。

简单周期波形拆分成两个正弦波的叠加

傅里叶变换可以让我们从一个复杂的波形里面,把构成这个波的单个正弦波分离出来。在这个例子中,你几乎可以通过“脑补”完成这一操作。

为什么?事实证明,现实世界中的许多事物间的互相交互,都是基于正弦波。我们通常将这种波的快慢的性质,称为波的频率。

最明显的例子就是声音 —— 当我们听到声音时,我们听不到那条波浪线,但我们听到构成声音的正弦波的不同频率。

能够在计算机上区分这两个音调,我们就可以了解一个人实际可以听到的内容。我们可以理解声音的高低,或弄清楚这个波包含了什么音符。

一些波看起来不像由正弦波构成,我们也可以用这个分解的过程来进行分析。

我们来看看这个家伙吧。这个波称为方波。

方波周期波形

虽然看起来不太可能,但它确实也可以分解成正弦波。

方波内的正弦波分解

这次我们需要很多 —— 理论上是无限多的正弦波来完美地表达一个方波。随着我们加入越来越多的正弦波,叠加出的波形就越来越接近方波。

有限个谐波合成方波

在视觉上,你会注意到前几个正弦波的叠加可以在结果中产生最大差异。滑块滑到一半时,就有一些方波的样子了,但它看起来摇摆不定。加上更多小的正弦波,组合出的波形看起来就平坦了。

当播放这个波形时,你会发现使用的正弦波少时,声音听起来更低沉一些。这是因为我们把高频率的成分去掉了。

这一过程可以用来处理任何有周期的波。试一试,画一个你喜欢的波形吧。

手工绘制任意波形进行傅里叶级数分解

和上一个方波类似,除了有些额外的摆动之外,滑块移动到中间位置,生成的波形就很接近你画的了。

我们可以利用这个事实:使用傅里叶变换,我们可以把音频中最重要的成分表达出来,并且得到和原始声音非常接近的波形。

在计算机中,波形以一系列数据点的形式来存储。

波形存储的数据点形式

我们可以做的是,将声音表示为一堆正弦波。然后可以通过忽略掉较小幅度的高频成分来压缩声音。尽管得出的波形与原始波形不一样,但是听起来将会和原始声音很接近。

声波中不同频率分量

这基本上就是MP3做的事情。MP3除此之外还可以更聪明地知道需要保留哪些频率以及扔掉哪些频率。

所以在这种情况下,我们可以使用傅里叶变换来理解波的基本属性,然后我们可以将它用于数据的压缩之类的事情。

好的,现在让我们深入了解傅立叶变换。下一部分看起来很酷,也让你更加了解傅立叶变换的作用。但大多只是“看起来”很酷。

周转圆

在开始时,我介绍了傅里叶变换可以将事物分成正弦波。但更酷的是,它产生的正弦波不仅仅是一般的正弦波,它们都是“三维”的正弦波。你可以称之为“复杂的”正弦曲线,或者,“螺旋”。

正弦螺旋线

如果我们从侧面看,它们看起来像正弦波。但是,从正面看,它们看起来像圆圈。

不同角度观看螺旋线

到目前为止,我们所做的一切只需要常规的2D正弦波。当我们对2D波进行傅里叶变换时,“复杂的”部分被忽略了,所以我们最终也只能得到正弦波。

但是我们可以使用3D正弦波来制作看起来很有趣的东西,就像这个:

3D正弦波绘制Yeah

这里发生了什么事情呢?

我们可以将一个手绘图理解为一个3D的形状,因为点的位置在随时间移动。如果你想象一个人正在绘制一只手,那么这三个维度就代表了某一时刻铅笔尖的位置。除了x和y维度告诉我们笔尖的位置,还有一个时间维度。

多了时间维度的3D形状

现在我们有一个3D的形状,我们不能使用常规2D正弦波把它表示出来。无论我们添加多少2D正弦波,我们都永远不会得到3D。所以我们需要些别的东西。

我们可以使用的是之前的3D螺旋正弦波。如果我们添加很多这些螺旋,得到的东西就看起来像我们的3D形状。

请记住,当我们从前面看它们时,这些波浪看起来像圆圈。围绕另一个圆圈移动的圆圈图案,被称为“周转圆”。

不同谐波叠加后的3D图形

像以前一样,我们只用几个圆圈就可以很好地近似表达出原始图案。因为这是一个相当简单的形状,所有后面添加的小圆都是使边缘更加锐利。

这些适用于任何一个图案。真的,现在你创作的机会来了。

任意形状的谐波分解

同样,你会发现,对于大多数形状,我们可以用很少的圆圈很好地近似表达它们,要保存一个形状,我们不必保存形状上所有的点。

这个方法可以应用于实际数据吗?答案是可以!实际上,我们有另一种称为SVG的数据格式,比我们在这里绘制图案更好用一些。所以目前,我们只是制作了些炫酷的小GIF。

FOURIERTRANSFORMS

然而,还有另一种类型的视觉数据使用傅里叶变换。

JPEGs

你知道傅立叶变换除了可以表达简单的手绘线条,还可以用于图像吗?事实上,我们一直都在使用它,因为这就是JPEG的工作原理!我们将相同的原理应用于图像 —— 将某些东西分成一堆正弦波,然后只存储重要的东西。

要处理图像,我们需要一种不同类型的正弦波。我们需要这样的一种“正弦波”:无论我们有什么样的图像,我们都可以添加一堆这些正弦波来回到原始图像。

要做到这一点,我们使用的每个正弦波也将是一个个小图像。我们现在使用一些黑白条纹的小图像,这些更可以表达为“线”,而不是波。为了表示“波”的大小,每个图像将具有或多或少的明暗对比。

我们也可以以类似的方式表示出颜色,但我们先从灰度图像开始玩。为了表示灰度图像,我们需要一些水平的波图案,还有一些垂直的波图案。

水平和垂直波形图
水平和垂直图像相乘

要得到一个8x8分辨率的图像,这里是我们需要的所有小图案。

8×8图像模块

如果我们把这些小图案的对比度调整到适当的值,然后将它们相加,我们就可以得出任意图像。

让我们从一个字母"A"开始。它非常小,但我们需要它很小,否则我们最终会得到太多其他的图像。

字母A

随着我们添加越来越多的这些图案,我们最终得到的东西越来越接近实际图像。我觉得你只要添加很少一部分图案,就能看出字母“A”的样子来。

字母A不同频率展开

对于实际的JPEG图像来说,这就是基本原理,剩下的只有一些额外的细节。

图像被分解为8x8块,每个块分别进行分解。我们使用一组频率来确定每个像素的亮度或暗度,然后是另外两组用于颜色,一组用于红绿色,另一组用于蓝黄色。我们为每个块使用的频率个数决定了JPEG图像的品质。

这是一个实际的JPEG图像,放大后我们可以看到细节。当我们改变JPEG品质水平时,可以观察出画质的区别。

实际JPEG图片

总结

让我们回顾一下:

  • 傅里叶变换让我们输入一个事物,并将其分解为不同频率的成分
  • 频率告诉我们有关数据的一些基本属性
  • 并且可以通过仅存储重要的成分来压缩数据
  • 我们还可以用傅里叶变换的原理,通过一堆圆圈制作看起来很酷的动画

这只是表面上的一些浅层次应用。傅里叶变换是一个非常强大的工具,因为将事物分解成不同频率是十分重要的分析方法。它们被用于许多领域,包括电路设计,移动网络信号,磁共振成像(MRI)和量子物理!

一些问题

我在这里跳过了大部分的数学原理。如果你对它的数学原理很感兴趣,可以用以下这些问题来帮助你研究:

  • 你如何在数学上表示傅里叶变换?
  • 连续时间傅立叶变换和离散时间傅立叶变换之间有什么区别?
  • 你如何计算傅里叶变换?
  • 你如何对整首歌曲进行傅里叶变换?(不仅仅是单个音符)

拓展阅读

要了解更多信息,你可以看看这些非常好的资源(作者推荐的这些资源是英文版的)。

  • An Interactive Guide To The Fourier Transform 从数学角度更加深刻地介绍傅里叶变换。

  • But what is the Fourier Transform?  A visual introduction. 3Blue1Brown 制作的 YouTube 视频,从音频的角度解释傅里叶变换的数学原理。

  • A Tale of Math & Art: Creating the Fourier Series Harmonic Circles Visualization 另一篇不错的文章,从线性代数的角度解释如何用周转圆来画出形状。

  • Fourier transform (Wikipedia) 当然,维基百科的解释也很不错。

  • 傅里叶变换(维基百科) 译者为你添加了中文维基的链接。

关于作者

我的名字叫Jez!我在美国湾区的一家搜索引擎公司工作,在业余时间我喜欢制作这样的游戏和互动代码!

作者Jez

这个网页是开源的,你可以查看GitHub上的代码!如果您有任何反馈或想提出任何问题,可以给我发邮件fourier@jezzamon.com,或者发Twitter。

本文原文网站链接:

http://www.jezzamon.com/fourier/zh-cn.html

病毒提醒我们,我们真正的工作并不是我们打的那份工,我们固然需要打工,然而上帝创造我们的目的并不是让我们打工。我们真正的工作是互相照顾、互相保护、互助互利。

--Bill Gates

TsinghuaJoking 这是一个公众号,它不端、不装,与你同游在课下、课上。 卓晴博士,清华大学中央主楼 626A。010-62773349, 13501115467,zhuoqing@tsinghua.edu.cn
评论
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 145浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 74浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 195浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 666浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 123浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 206浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 159浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 134浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 32浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 238浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 324浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 178浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 210浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 619浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦