原创聚合|Linux阅码场原创精华文章汇总与征稿

Linux阅码场 2022-06-09 08:00
阅码场近期征稿选题


性能优化案例:

1 内存

2 功耗

3 调度

4 存储

5 FWK

安全类:

1 安全启动和远程证明原理

2 tee原理以及应用分析

3 权限最小化管理以及沙箱技术

4 mac技术:selinux原理

5 ids入侵检测技术(包括rootkit检测等)结合AI技术

6 IMA和dim kernel原理

7 隐私计算

8 DRM



阅码场用户选题:


1 内核对cache/tlb的配置刷新及刷新时机
2 深入理解Bcache
SMP和超线程
 cache一致性协议与False Sharing
处理器微架构及IPCCPI
NUMA
MMUIOMMU技术
wayland,DRM,hugetlb,cgroupbcache,__attribute__,tee, gdb,rtos,进程调度,shell编程,wayland,mountautosuspend,RCU,CFI,中断。
(以上为用户在后台提交的关键词,欢迎投稿)


原创精华文章


Linux glibc 内存站岗问题及解决方法

持续更新,敬请期待!(最后更新日期2022.04.19)


Linux学习方法:

宋宝华:迭代螺旋法——关于Linux学习方法的血泪建议
宋宝华:纪念金庸先生——程序员的武侠世界

甄建勇:芯片架构方法学

如何阅读Linux内核的源码

总是选择难的那条路




Linux任督二脉之进程管理


郭健:Linux进程调度技术的前世今生之“前世”

郭健:Linux进程调度技术的前世今生之“今生”
深入理解Linux内核进程上下文切换

漫话Linux之“躺平”: IDLE 子系统

宋宝华:是谁关闭了Linux抢占,而抢占又关闭了谁?

同样学习Linux, 为何差别这么大? - 论打通Linux进程和内存管理任督二脉

宋宝华: 僵尸进程的成因以及僵尸可以被“杀死”吗?

宋宝华:关于Linux进程优先级数字混乱的彻底澄清

有关微内核OS史上最透彻一篇 - 写于华为鸿蒙发布一周之际

被神话的Linux, 一文带你看清Linux在多核可扩展性设计上的不足

fork三部曲:Linux fork那些隐藏的开销

fork三部曲:Unix/Linux fork前传

fork三部曲:Fork三部曲之clone的诞生

理解Linux内核抢占模型(最透彻一篇)

大碰撞!当Linux多线程遭遇Linux多进程

宋宝华:在实时操作系统里面随便怎么写代码都能硬实时吗?

Linux中父进程为何要苦苦地知道子进程的死亡原因?

定位并行应用程序中的可伸缩性问题(最透彻一篇)

宋宝华:谈一谈Linux让实时/高性能任务独占CPU的事

彭伟林:Linux schedule 之 Cgroupnew

彭伟林:Linux schedule 调度算法new


Linux任督二脉之内存管理


宋宝华:CPU是如何访问到内存的?--MMU最基本原理

宋宝华:那些年你误会的Linux DMA(关于Linux DMA ZONE和API最透彻的一篇)

围绕HugeTLB的极致优化

Linux glibc 内存站岗问题及解决方法

宋宝华:网上坑爹的Linux资料汇总之内存管理

宋宝华:swappiness=0究竟意味着什么?

宋宝华:kvmalloc ——倚天剑屠龙刀两大神器合体?

宋牧春:多图详解Linux内存分配器slub

宋牧春:Linux内核slab内存的越界检查——SLUB_DEBUG
宋宝华:世上最好的共享内存(Linux共享内存最透彻的一篇)

宋宝华:论Linux的页迁移(Page Migration)完整版

郭健:Linux内存逆向映射(reverse mapping)技术的前世今生
谢宝友:深入理解Linux RCU之一——从硬件说起

谢宝友:深入理解Linux RCU:从硬件说起之内存屏障

廖威雄: 学习Linux必备的硬件基础一网打尽

为什么内核访问用户数据之前,要做access_ok?
Linux的page cache使用情况/命中率查看和操控

Linux内核如何私闯进程地址空间并修改进程内存

内存泄漏(增长)火焰图

宋宝华:Linux为什么一定要copy_from_user ?

linux内核写时复制机制源代码解读

深入剖析Linux内核反向映射机制

宋宝华:深入理解cache对写好代码至关重要(上)

用户态进程如何得到虚拟地址对应的物理地址?

内存管理的另辟蹊径 - 腾讯云虚拟化开源团队为内核引入全新虚拟文件系统(dmemfs)

宋宝华:Linux内核中用GFP_ATOMIC申请内存究竟意味着什么?

宋宝华:ARM64 Linux内核页表的块映射

程磊:Linux OOM 基本原理解析(new


系统调试调优


推荐Linux性能分析的一篇论文和两本书

宋宝华:深入理解cache对写好代码至关重要(上)

宋宝华:关于Ftrace的一个完整案例

(重磅原创)冬之焱: 谈谈Linux内核的栈回溯与妙用

阿里杨勇:浅谈 Linux 高负载的系统化分析

Linux TraceEvent - 我见过的史上最长宏定义

大神如何不择手段,最快最精准打击Linux网络问题?

揭露内核黑科技 - 热补丁技术真容

Linux pstore 实现自动“抓捕”内核崩溃日志

解决Linux内核问题实用技巧之-dev/mem的新玩法

吴章金:如何创建一个*可执行*的共享库

吴章金: 深度剖析 Linux共享库的“位置无关”实现原理

吴章金:通过操作 Section 为 Linux ELF 程序新增数据

吴章金:实例解析 Linux C 语言程序之变量类型

解决Linux内核问题实用技巧之 - Crash工具结合/dev/mem任意修改内存

解决Linux内核问题实用技巧之-dev/mem的新玩法

宋宝华:火焰图:全局视野的Linux性能剖析

宋宝华:当Linux内核遭遇鲨鱼—kernelshark

孟冉: Linux火焰图的数据流程分析

宋宝华:用off-cpu火焰图进行Linux性能分析

宋宝华:用eBPF/bcc分析系统性能的一个简单案例

朱辉(茶水):Linux Kernel iowait 时间的代码原理

朴英敏:用crash工具分析Linux内核死锁的一次实战

宋宝华:Kernel Oops和Panic是一回事吗?

廖威雄: 利用__attribute__((section()))构建初始化函数表与Linux内核init的实现

宋宝华:关于Linux编译优化几个必须掌握的姿势

燕青:Unixbench 测试套件缺陷深度分析

宋宝华:一个简单的python脚本画出Linux程序/库依赖图

宋宝华:一个简单的python脚本看透Linux程序对库的依赖

Linux 系统性能评测基准系统配置及其原理

精品译文系列:Linux多线程应用性能分析

Linux 系统性能评测基准系统配置及其原理

李浩: 再谈 volatile 关键字

闻茂泉:系统性能监控与分析的工程化实践之路(new

彭伟林:Ftrace Hook (Linux内核热补丁) 详解new

彭伟林:BPF内核实现详解new

李棒:深入理解内存泄漏检查kmemleaknew

彭伟林:手把手入门火焰图(new

李棒:浅谈 ARM64 基于硬件 tag 的 KASAN(new

彭伟林:使用ftrace分析函数性能(new

彭伟林:Linux ftrace 1.3、tracer (function、function_graph、irq_off)(new

徐庆伟:Linux Tracing System浅析和eBPF开发经验分享(new

宋赛:一文读懂eBPF的前世今生(new

彭伟林:深入理解Linux ftrace 之 trace event(new

龙城赤子:一个内核oops问题的分析及解决new

张彦飞:深入理解Linux网络之网络性能优化建议(new


文件系统和IO


宋宝华:Linux文件读写(BIO)波澜壮阔的一生

刘正元: Linux 通用块层之IO合并

黄伟亮:ext4文件系统之裸数据的分析实践

黄伟亮:探秘Linux的块设备和根

打通IO栈:一次编译服务器性能优化实战

吴锦华/明鑫: 用户态文件系统(FUSE)框架分析和实战

实例演绎Unix/Linux的"一切皆文件"思想

300来行代码带你实现一个能跑的最小Linux文件系统

宋宝华:论一切都是文件之匿名inode


设备驱动


宋宝华:让天堂的归天堂,让尘土的归尘土——谈Linux的总线、设备、驱动模型

宋宝华:Linux设备驱动框架里的设计模式之——模板方法(Template Method)

桃李春风一杯酒,江湖夜雨十年灯 - 老兵夜话DPDK

Linux Tcp 内核协议栈学习三种武器 之 Packet Drill

宋宝华:Linux内核编程广泛使用的前向声明(Forward Declaration)

宋宝华:Linux设备与驱动的手动解绑与手动绑定

用Linux内核的瑞士军刀-eBPF实现socket转发offload

宋牧春:Linux设备树文件结构与解析深度分析(1)

宋牧春:Linux设备树文件结构与解析深度分析(2)
何晔:当ZYNQ遇到Linux Userspace I/O(UIO)

邵国际: C 语言对象化设计实例 —— 命令解析器

宋宝华:关于ARM Linux原子操作的实现

罗玉平:关于ARM Linux原子操作的底层支持

Linux的中断可以嵌套吗?

ARM Linux的中断服务程序工作在ARM的IRQ模式吗?

宋宝华:几个人一起抢spinlock,到底谁先抢到?

宋宝华:为什么Linux内核常常用unsigned long来代替指针

孙雷: 虚拟化之——virtio-net基础篇

Jack:深入理解VFIO驱动框架(new

尹忠凯:dma-buf学习分享(new


用户态编程


一文读懂Linux进程、进程组、会话、僵尸

骆小刚:Linux后台服务启动方式systemd、daemon、nohup大比拼

郝健:Linux下服务程序启动管理方式的分析与总结

宋宝华:一图理解终端、会话、 进程组、进程关系

宋宝华:让Linux的段错误(segmentation fault)不再是一个错误


云和虚拟化


宋宝华:Docker 最初的2小时(Docker从入门到入门)

KVM最初的2小时——KVM从入门到放弃(修订版)

Leo Hou:深入理解SR-IOV和IO虚拟化(new

黄鹏:报文ACL算法之HyperSplit Tree建树性能优化new

黄鹏:DPDK代码级调优之__rte_cache_alignednew


Linux内核月报


Linux阅码场 - Linux内核月报(2020年06月)

Linux阅码场 - Linux内核月报(2020年07月)

Linux阅码场 - Linux内核月报(2020年08月)

Linux阅码场 - Linux内核月报(2020年09月)

Linux阅码场 - Linux内核月报(2020年10月)


Linuxer 人生


宋宝华:公元1024年Linux内核的尘封往事

经历≠经验,码农如何工作10年依然是菜鸟?

陈莉君教授: 回望踏入Linux内核之旅

魏永明:MiniGUI的涅槃重生之路

谢宝友: 手把手教你给Linux内核发patch


ARM 架构


周贺贺:深入学起Cache系列 3 : 多核多Cluster多系统之间的缓存一致性(new

周贺贺:深入学习Cache系列 2: Cache是如何工作的?概念以及工作过程(new

周贺贺:深入学习Cache系列 1: 带着几个疑问,从Cache的应用场景学起(new

周贺贺:armv8/armv9不同特权程序之间的跳转模型(new

周贺贺:armv8/armv9中断系列详解-中断示例展示(new

周贺贺:armv8-armv9中断系列详解-硬件基础篇(new

周贺贺:armv8-armv9 MMU深度学习(new

周贺贺:一文了解Linux Kernel中密码学算法的设计与应用(new

周贺贺:ATF快速扫盲(Quick Start)(new

周贺贺:Linux Kernel中非对称密码算法的实现(new

实时系统与性能


王顺刚:xenomai3.1+linux构建linux实时操作系统-基于X86_64和armnew

王顺刚:xenomai内核解析之嵌入式实时linux概述new

彭伟林:Linux实时化与硬实时RTOS综述new

邓世强:浅谈Linux内核的实时性优化(new

王顺刚:xenomai内核解析--双核系统调用(一)(new

王顺刚:xenomai内核解析--双核系统调用(二)--应用如何区分xenomai/linux系统调用或服务(new

王顺刚:xenomai内存池管理(new

王顺刚:有利于提高xenomai 实时性的一些配置建议(new


系统信息安全


彭伟林:CFI/CFG 安全防护原理详解(new

书意:sel4源码解析(二) - CSpace(new

书意:sel4源码解析(一) - sel4内核对象(new


芯片与系统架构


甄建勇:CXL:为缓存一致性而生的新一代总线

zheng Li:从多核到众核处理器


平台与硬件


彭伟林:深入理解EtherCATnew

Leo:机械按键扫描——数字逻辑有限状态机思想在软件中的实现(new

程晨:Arduino Portenta X8新开发模式支持Docker(new






扫描/识别二维码关注"Linux阅码场" 

如果您觉得不错,请转发转发转发!

或者随手点个“在看”吧~

Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论 (0)
  • 在PCB制造过程中,表面处理工艺的选择直接影响到电路板的性能、可靠性和成本。捷多邦作为行业领先的PCB制造商,致力于为客户提供高质量、高可靠性的PCB产品。本文将深入探讨沉金、镀金和HASL(热风整平)三种常见表面处理工艺的特点及其对PCB质量的影响,帮助您做出最佳选择。 1. 沉金(ENIG)沉金工艺通过化学沉积在PCB表面形成一层镍金合金,具有以下优势: ​平整度高:适合高密度、细间距的PCB设计,尤其适用于BGA和QFN封装。​抗氧化性强:金层能有效防止铜氧化,延长PC
    捷多邦 2025-03-19 10:11 90浏览
  • 在电子制造业中,PCB(印制电路板)作为电子设备的核心组件,其质量直接决定了产品的性能和可靠性。尤其是高端PCB,广泛应用于航空航天、医疗设备、通信设备等领域,对质量的要求近乎苛刻。捷多邦作为PCB行业的领先品牌,深知严格的质量管理体系是确保高端PCB制造成功的关键。1. ​原材料质量控制高端PCB的制造始于原材料的严格筛选。捷多邦采用符合IPC标准的基材,如FR-4、PTFE等,确保材料的电气性能、机械性能和耐热性满足高端应用需求。通过严格的入库检验,包括铜箔附着力、表面平整度等测试。2. ​
    捷多邦 2025-03-19 10:13 83浏览
  • PCB层数越多质量就越好吗?多层板制造中的质量控制要点随着电子产品对性能和功能要求的不断提高,多层PCB(多层印刷电路板)已经成为众多高端应用领域的标准配置。很多人存在一个误区:层数越多的PCB质量就一定越好。实际上,层数与质量并不是直接的正比关系,正确的设计和精确的质量控制才是决定PCB质量的关键。1. 层数并非质量的唯一标准多层PCB的质量并不仅仅取决于层数的多少,而是与其设计、制造精度和材料的选择密切相关。增加层数的目的通常是为了提高电路密度和实现复杂的布线结构。如果设计不合理或制造不精确
    捷多邦 2025-03-19 10:14 126浏览
  • 在PCB(印刷电路板)的制造过程中,材料选择对最终产品的性能、稳定性和可靠性有着直接的影响。作为行业领先的PCB制造商,捷多邦始终坚持在材料选择上精益求精,确保每一款PCB产品都能够满足客户对高质量的需求。今天,我们将重点分析FR4、Rogers和铝基板三种常见材料,它们如何影响PCB的质量与性能,以及捷多邦如何通过优化材料选择为客户提供更具竞争力的产品。1. FR4:高性价比的通用材料FR4是最常见的PCB基材,广泛应用于消费电子、通信、计算机等领域。它由玻璃纤维和环氧树脂复合而成,具有良好的
    捷多邦 2025-03-19 10:09 75浏览
  • ​ 在智能设备普及的今天,语音识别已成为人机交互的核心入口。然而,环境噪声、口音差异、硬件设计限制等因素常导致识别率下降,影响用户体验。广州唯创电子凭借25年技术积累,推出 WTK6900系列语音识别芯片,通过“芯片性能+算法优化+场景适配”三位一体的解决方案,将标准方案识别率提升至 97%,为行业树立技术标杆。一、WTK6900系列:破解语音识别难题的核心利器1. 高性能芯片架构,奠定识别基础WTK6900系列采用 32位高性能处理器 与 深度神经网络(DNN)算法,支持实时语音信号
    广州唯创电子 2025-03-19 09:11 46浏览
  • 概念在GNSS测量和地理信息系统(GIS)中,基线(Baseline)是指两个或多个接收机之间的直线距离,通常用于描述RTK(实时动态定位)或其他差分GPS技术中的相对位置关系。基线通常由三个分量表示:东向(East)、北向(North)和垂直向(Up),分别表示两个测点之间的东西方向、南北方向和垂直方向的距离差。RTK(Real-Time Kinematic,实时动态)基线是指在RTK GPS测量技术中,两个测站(通常是一个固定的基准站和一个移动的接收站)之间的向量差。这个向量差包括了两个测站
    德思特测试测量 2025-03-19 11:23 90浏览
  • 这是一个很有意思的话题,在职场人士之间争论不休。证书到底有没有用?有人支持,也有人反对。不过,在正式聊这个话题之前,我想先分享一个我亲身经历的真实故事。那时,我和同学们正在读管理学的研究生课程。有一次,我们的教授要求大家穿正装上课。这时,有个同学问了个很有趣的问题:“教授,某某的董事长可以穿得五颜六色,我们这些职场新人为什么非得穿正装?”教授听后,停顿了一下,然后淡定地回了句:“你当然也可以穿得五颜六色,但前提是——先成为某某的董事长那样的人。”这句话点出了一个事实:同一套规则,并不适用于所有人
    优思学院 2025-03-19 12:02 81浏览
  • 在电子领域,高品质线路板是众多电子产品稳定运行的基石。那么,究竟达到怎样的标准,才能被称为高品质线路板呢?​捷多邦小编整理了关于高品质线路板的标准解析​,一起看看吧。 从电气性能角度出发,高品质线路板首当其冲要确保线路导通性良好。这意味着电流能顺畅地在铜箔线路中流动,电阻、电容等关键参数必须严格符合设计要求。无论是在初始运行,还是经过长时间的使​用后,都能维持稳定的电气性能,不出现参数漂移等问题。同时,面对复杂的电磁环境,它要有极强的抗干扰能力,有效减少信号传输时的失真与干扰,保证信号
    捷多邦 2025-03-19 09:33 81浏览
  • 在现代电子行业,PCB(印刷电路板)的质量直接影响到产品的稳定性与性能。作为全球领先的PCB制造商,捷多邦始终将质量放在第一位,致力于为客户提供高可靠性、高精度的PCB产品。为了确保每一块成品PCB都符合最高的质量标准,捷多邦在从设计到生产的每个环节都严格把控,确保质量无可挑剔。1. 精准设计:从需求到规格PCB的质量首先体现在设计阶段。捷多邦的设计团队根据客户需求,使用最新的EDA软件进行电路板布局设计。通过设计规则检查(DRC),确保电路板设计满足行业标准和客户的特殊需求。无论是单面板、双面
    捷多邦 2025-03-19 10:09 70浏览
  • 在电子产品制造中,选择合适的PCB至关重要。虽然廉价PCB节省成本,但长期使用下来,它们可能会带来更多的风险和隐患。作为工程师,我们需要权衡PCB的质量与成本,尤其是在高要求的应用中。论文将以捷多邦为例,分析廉价PCB与高质量PCB的差异。 1.材料与性能廉价PCB通常采用低质量材料,这可能会影响其电气和机械性能。相比之下,捷多邦的高质量PCB采用符合行业标准的优质材料(如FR4、PTFE等),确保更高的热稳定性和抗湿性,提升产品的可靠性。 2.准确性与可靠性廉价的PCB工艺
    捷多邦 2025-03-19 09:36 85浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦