干货|详解IGBT驱动电路设计

电子工程世界 2022-06-08 07:30

▲ 更多精彩内容 请点击上方蓝字关注我们吧!


IGBT,中文名字为绝缘栅双极型晶体管,它是由MOSFET(输入级)和PNP晶体管(输出级)复合而成的一种器件,既有MOSFET器件驱动功率小和开关速度快的特点(控制和响应),又有双极型器件饱和压降低而容量大的特点(功率级较为耐用),频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内。


理想等效电路与实际等效电路如图所示:


IGBT 的静态特性一般用不到,暂时不用考虑,重点考虑动态特性(开关特性)。
动态特性的简易过程可从下面的表格和图形中获取:


IGBT的开通过程


IGBT 在开通过程中,分为几段时间
1.与MOSFET类似的开通过程,也是分为三段的充电时间
2.只是在漏源DS电压下降过程后期,PNP晶体管由放大区至饱和过程中增加了一段延迟时间。

在上面的表格中,定义了:开通时间Ton,上升时间Tr和Tr.i

除了这两个时间以外,还有一个时间为开通延迟时间td.on:td.on=Ton-Tr.i


IGBT在关断过程


IGBT在关断过程中,漏极电流的波形变为两段。


第一段是按照MOS管关断的特性的


第二段是在MOSFET关断后,PNP晶体管上存储的电荷难以迅速释放,造成漏极电流较长的尾部时间。


在上面的表格中,定义了:关断时间Toff,下降时间Tf和Tf.i


除了表格中以外,还定义


trv为DS端电压的上升时间和关断延迟时间td(off)。


漏极电流的下降时间Tf由图中的t(f1)和t(f2)两段组成,而总的关断时间可以称为toff=td(off)+trv十t(f),td(off)+trv之和又称为存储时间。

从下面图中可看出详细的栅极电流和栅极电压,CE电流和CE电压的关系:


从另外一张图中细看MOS管与IGBT管栅极特性可能更有一个清楚的概念:


开启过程


关断过程


尝试去计算IGBT的开启过程,主要是时间和门电阻的散热情况。

C.GE 栅极-发射极电容
C.CE 集电极-发射极电容
C.GC 门级-集电极电容(米勒电容)


Cies = CGE + CGC 输入电容
Cres = CGC       反向电容
Coes = CGC + CCE 输出电容


根据充电的详细过程,可以下图所示的过程进行分析


对应的电流可简单用下图所示:

第1阶段:栅级电流对电容CGE进行充电,栅射电压VGE上升到开启阈值电压VGE(th)。这个过程电流很大,甚至可以达到几安培的瞬态电流。在这个阶段,集电极是没有电流的,极电压也没有变化,这段时间也就是死区时间,由于只对GE电容充电,相对来说这是比较容易计算的,由于我们采用电压源供电,这段曲线确实是一阶指数曲线。


第2阶段:栅极电流对Cge和Cgc电容充电,IGBT的开始开启的过程了,集电极电流开始增加,达到最大负载电流电流IC,由于存在二极管的反向恢复电流,因此这个过程与MOS管的过程略有不同,同时栅极电压也达到了米勒平台电压。


第3阶段:栅极电流对Cge和Cgc电容充电,这个时候VGE是完全不变的,值得我们注意的是Vce的变化非常快。


第4阶段:栅极电流对Cge和Cgc电容充电,随着Vce缓慢变化成稳态电压,米勒电容也随着电压的减小而增大。Vge仍旧维持在米勒平台上。


第5阶段:这个时候栅极电流继续对Cge充电,Vge电压开始上升,整个IGBT完全打开。


我的一个同事在做这个将整个过程等效为一阶过程。


如果以这个电路作为驱动电路的话:


驱动的等效电路可以表示为:


利用RC的充放电曲线可得出时间和电阻的功率。


这么算的话,就等于用指数曲线,代替了整个上升过程,结果与等效的过程还是有些差距的。


不过由于C.GE,C.CE,C.GC是变化的,而且电容两端的电压时刻在变化,我们无法完全整理出一条思路来。


很多供应商都是推荐使用Qg来做运算,计算方法也可以整理出来,唯一的变化在于Qg是在一定条件下测定的,我们并不知道这种做法的容差是多少。


我觉得这种做法的最大的问题是把整个Tsw全部作为充放电的时间,对此还是略有些疑惑的。


说说我个人的看法,对这个问题,定量的去计算得到整个时间非常困难,其实就是仿真也是通过数字建模之后进行实时计算的结果,这个模型与实际的条件进行对比也可能有很大的差距。


因此如果有人要核算整个栅极控制时序和时间,利用电容充电的办法大致给出一个很粗略的结果是可以的,如果要精确的,算不出来。


对于门级电阻来说,每次开关都属于瞬态功耗,可以使用以前介绍过的电阻的瞬态功率进行验算吧。


电阻抗脉冲能力


我们选电阻的大小是为了提供足够的电流,也是为了足够自身散热情况。


前级的三极管,这个三极管的速度要非常快,否则如果进入饱和的时间不够短,在充电的时候将可能有钳制作用,因此我对于这个电路的看法是一定要做测试。空载的和带负载的,可能情况有很大的差异。

栅极驱动的改进历程和办法(针对米勒平台关断特性)


前面都讲了一些计算的东西,这次总结一些设计法则。


栅极电阻:其目的是改善控制脉冲上升沿和下降沿的斜率,并且防止寄生电感与电容振荡,限制IGBT集电极电压的尖脉冲值。

栅极电阻值小——充放电较快,能减小开关时间和开关损耗,增强工作的耐固性,避免带来因dv/dt的误导通。缺点是电路中存在杂散电感在IGBT上产生大的电压尖峰,使得栅极承受噪声能力小,易产生寄生振荡。


栅极电阻值大——充放电较慢,开关时间和开关损耗增大。


一般的:开通电压15V±10%的正栅极电压,可产生完全饱和,而且开关损耗最小,当<12V时通态损耗加大,>20V时难以实现过流及短路保护。关断偏压-5到-15V目的是出现噪声仍可有效关断,并可减小关断损耗最佳值约为-8~10V。

栅极参数对电路的影响


IGBT内部的续流二极管的开关特性也受栅极电阻的影响,并也会限制我们选取栅极阻抗的最小值。IGBT的导通开关速度实质上只能与所用续流二极管反向恢复特性相兼容的水平。栅极电阻的减小不仅增大了IGBT的过电压应力,而且由于IGBT模块中di/dt的增大,也增大了续流二极管的过压极限。

栅极电阻与关断变化图


栅极驱动的印刷电路板布线需要非常注意,核心问题是降低寄生电感,对防止潜在的振荡,栅极电压上升速率,噪音损耗的降低,降低栅极电压的需求或减小栅极保护电路的效率有较大的影响。

措施


因此将驱动至栅极的引线加粗,将之间的寄生电感减至最低。控制板与栅极驱动电路需要防止功率电路和控制电路之间的电感耦合。


当控制板和IGBT控制端子不能直接连接时,考虑用双股绞线(2转/CM小于3CM长)或带状线,同轴线进行连接。

栅极保护


为了保险起见,可采用TVS等栅极箝位保护电路,考虑放置于靠近IGBT模块的栅极和发射极控制端子附近。IGBT基础与运用-2 中英飞凌的电路比较典型。

耦合干扰与噪声


IGBT的开关会使用相互电位改变,PCB板的连线之间彼此不宜太近,过高的dv/dt会由寄生电容产生耦合噪声。要减少器件之间的寄生电容,避免产生耦合噪声。

由于IGBT等功率器件都存在一定的结电容,所以会造成器件导通关断的延迟现象。虽然我们尽量考虑去降低该影响(提高控制极驱动电压电流,设置结电容释放回路等)。但是为了防止关断延迟效应造成上下桥臂直通,因为一个桥臂未完全关断,而另一桥臂又处于导通状态,直通炸模块后后果非常严重(最好的结果是过热)。


死区时间(空载时间)设置


在控制中,人为加入上下桥臂同时关断时间,以保证驱动的安全性。死区时间大,模块工作更加可靠,但会带来输出波形的失真及降低输出效率。死区时间小,输出波形要好一些,只是会降低可靠性,一般为us级,典型数值在3us以上。


在汽车电子应用中,特别要注意环境温度对toff的影响很大,使得toff延长,并且栅极电阻的加入也是的关断时间受一定的影响,因此需要进行调整。

IGBT栅极引起的问题列表(红色部分圈注的):



来源:硬件攻城狮

推荐阅读

干货|单片机常用外围电路设计参考与心得
干货 | 运放基本电路超全解析
干货|电容到底能抗多大的ESD?



添加微信回复“进群”

拉你进技术交流群!

国产芯|汽车电子|物联网|新能源|电源|工业|嵌入式…..  

众号内回复您想搜索的任意内容,如问题关键字、技术名词、bug代码等,就能轻松获得与之相关的专业技术内容反馈。快去试试吧!


如果您想经常看到我们的文章,可以进入我们的主页,点击屏幕右上角「三个小点」,点击「设为星标」。

欢迎扫码关注

电子工程世界 关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
评论
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 170浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦