隔离电源和非隔离电源的区别,小白必读!

电源研发精英圈 2022-06-07 20:00

点击上方图片跳转至618活动文章


在产品设计时,倘若没有考虑应用环境对电源隔离的要求,产品到了应用时就会出现因设计方案的不当导致的系统不稳定,甚至出现高压损坏后级负载的情况,以及出现危害人身财产安全的情况。因此产品设计是否需要隔离至关重要。

“南航一名23岁空姐在iPhone5充电时打电话被电死”,新闻在网上引起广泛关注。充电器也能能危害生命?专家分析手机充电器内部变压器漏电,220VAC的交流电漏电到直流端,并通过数据线传导到了手机金属壳上,最终导致触电身亡,发生无可挽回的悲剧。


那么手机充电器输出端为什么会带有220V的交流电呢?隔离电源的选型要注意哪些事项?如何区分电源是隔离与非隔离?业内通用的看法是: 


1、隔离电源:电源的输入回路和输出回路之间没有直接的电气连接,输入和输出之间是绝缘的高阻态,没有电流回路,如图1所示:


图1 采用变压器的隔离电源


2、非隔离电源输入和输出之间有直接的电流回路,例如,输入和输出之间是共地的。以隔离的反激电路和非隔离的BUCK电路为例,如图2所示。 


图2 非隔离电源 




01
 隔离电源与非隔离电源的优缺点



由上述概念可知,对于常用的电源拓扑而言,非隔离电源主要有:Buck、Boost、Buck-Boost等;而隔离电源主要有各种带隔离变压器的反激、正激、半桥、LLC等拓扑。


结合常用的隔离与非隔离电源,我们从直观上就可得出它们的一些优缺点,两者的优缺点几乎是相反的。


使用隔离或非隔离的电源,需了解实际项目对电源的需求是怎样的,但在此之前,可了解下隔离和非隔离电源的主要差别:


①隔离模块的可靠性高,但成本高,效率差点。


②非隔离模块的结构很简单,成本低,效率高,安全性能差。


因此,在如下几个场合,建议用隔离电源:


①涉及可能触电的场合,如从电网取电,转成低压直流的场合,需用隔离的AC-DC电源;


②串行通信总线通过RS-232、RS-485和控制器局域网(CAN)等物理网络传送数据这些相互连接的系统每个都配备有自己的电源,而且各系统之间往往间隔较远,因此,我们通常需要隔离电源进行电气隔离来确保系统的物理安全,且通过隔离切断接地回路,来保护系统免受瞬态高电压冲击,同时减少信号失真;


③对外的I/O端口,为保证系统的可靠运行,也建议对I/O端口做电源隔离。


总结的表如表1所示,两者的优缺点几乎是相反的。


表1 隔离电源和非隔离电源的优缺点


02
 隔离电源与非隔离电源的选择



通过了解隔离与非隔离电源的优缺点可知,它们各有优势,对于一些常用的嵌入式供电选择,我们已可做成准确的判断:


①系统前级的电源,为提高抗干扰性能,保证可靠性,一般用隔离电源。


② 电路板内的IC或部分电路供电,从性价比和体积出发,优先选用非隔离的方案。


③ 对安全有要求的场合,如需接市电的AC-DC,或医疗用的电源,为保证人身的安全,必须用隔离电源,有些场合还必须用加强隔离的电源。


④ 对于远程工业通信的供电,为有效降低地电势差和导线耦合干扰的影响,一般用隔离电源为每个通信节点单独供电。


⑤ 对于采用电池供电,对续航力要求严苛的场合,采用非隔离供电。


通过了解隔离与非隔离电源的优缺点可知,它们各有优势,对于一些常用的嵌入式供电设计,我们可总结出其选择的场合。


1、隔离电源 

  • 系统前级的电源,为提高抗干扰性能,保证可靠性,一般用隔离电源;

  • 对安全有要求的场合,如需接市电的AC-DC,或医疗用的电源和白色家电,为保证人身的安全,必须用隔离电源,如MPS的MP020,为原边反馈隔离型AC-DC,适合于1~10W应用 ;

  • 对于远程工业通信的供电,为有效降低地电势差和导线耦合干扰的影响,一般用隔离电源为每个通信节点单独供电。


2、非隔离电源

  • 电路板内的IC或部分电路供电,从性价比和体积出发,优先选用非隔离的方案;如MPS的MP150/157/MP174系列buck型非隔离AC-DC,适合于1~5W应用;

  • 对于工作电压低于36V,采用电池供电,对续航力要求严苛的场合,优先采用非隔离供电,如MPS的MP2451/MPQ2451。


隔离电源与非隔离电源优缺点:


通过了解隔离与非隔离电源的优缺点可知,它们各有优势,对于一些常用的嵌入式供电选择,我们可遵循以下判断条件:


对安全有要求的场合,如需接市电的AC-DC,或医疗用的电源,为保证人身的安全,必须用隔离电源,有些场合还必须用加强隔离的电源。


一般场合使用对模块电源隔离电压要求不是很高,但是更高的隔离电压可以保证模块电源具有更小的漏电流,更高的安全性和可靠性,并且EMC特性也更好一些,因此目前业界普遍的隔离电压水平为1500VDC以上。



03
 隔离电源模块选型的注意事项



电源的隔离耐压在GB-4943国标中又叫抗电强度,这个GB-4943标准就是我们常说的信息类设备的安全标准,就是为了防止人员受到物理和电气伤害的国家标准,其中包括避免人受到电击伤害、物理伤害、爆炸等伤害。如下图为隔离电源结构图。 


隔离电源结构图


作为模块电源的重要指标,标准中也规定了隔离耐压相关测试方法,简单的测试时一般采用等电位连接测试,连接示意图如下:


隔离耐压测试示意图


测试方法:

将耐压计的电压设为规定的耐压值,电流设为规定的漏电流值,时间设为规定的测试时间值;


操作耐压计开始测试,开始加压,在规定的测试时间内,模块应无击穿,无飞弧现象。

注意在测试时焊接电源模块要选取合适的温度,避免反复焊接,损坏电源模块。


除此之外还要注意:


1、要注意是AC-DC还是DC-DC。


2、隔离电源模块的隔离耐压。例如隔离1000V DC 是否满足绝缘要求。


3、隔离电源模块是否有进行全面的可靠性测试。电源模块要经过性能测试、容差测试、瞬态条件测试、可靠性测试、EMC电磁兼容测试、高低温测试、极限测试、寿命测试、安规测试等。


4、隔离电源模块的生产工厂产线是否规范。电源模块生产线需要通过ISO9001, ISO14001,OHSAS18001等多项国际认证,如下图3所示。


图3 ISO认证


5、隔离电源模块是否有应用在工业、汽车等恶劣环境。电源模块不仅仅大量应用与恶劣的工业环境,同时在新能源汽车的BMS管理系统中也游刃有余。


04
 关于隔离电源与非隔离电源的感悟



首先阐述一个误区:很多人认为非隔离电源不如隔离电源好,因为隔离电源贵,所以肯定贵的就好。

为什么现在大家的印象当中用隔离电源比用非隔离的要好,其实不然,这种想法都是停留在几年前的想法当中。因为前几年非隔离的稳定性确实没有隔离稳定,但随着研发技术的更新,现如今非隔离已经非常成熟,日渐稳定。说到安全性,其实现在非隔离电源也是很安全的,只要在结构稍微做下改动,对人体还是很安全的,同样的道理,非隔离电源也是可以过很多安规标准,例如:ULTUVSAACE等。

实际上非隔离电源损坏的根源就是电源AC线两端的浪涌电压所致,也可以这么说,雷击浪涌吧,这种电压是加在电压AC线两端的瞬间高压,有时高达三千伏,但时间很短,能量却极强,在打雷时会发生,或是在同一条AC线上,当一个大的负载断开瞬间,因为电流惯性的原因也会发生,这个电压进入电源,对于非隔离BUCK电路,会瞬间传达到输出,击坏恒流检测环,或是进一步击坏芯片,造成300v直通,而烧掉整条灯管。对于隔离反激电源,会击坏MOS,现象就是保管,芯片,MOS管全烧坏。现在LED驱动电源,在使用过程中坏的,80%以上都是这两种类似现象。而且,小型开关电源,就算是电源适配器,也经常损坏的是这个现象,均是浪涌电压所致,而在LED电源里,表现的更加普遍,这是因为LED的负载特性是特别的怕浪涌电压的。

如果按照一般的理论来讲,电子电路里,元器件越少,可靠性越高,相应越多的元件的电路板可靠性则越低。实际上非隔离电路的元件是比隔离电路要少的,为什么隔离电路可靠性高。其实说白了,不是什么可靠性,而是非隔离电路对于浪涌太敏感,抑制能力差,隔离电路,因为能量是先进入变压器,然后从变压器再输送到LED负载的。BUCK电路是输入电源一部分直接加在了LED负载上,故前者对浪涌抑制和衰减能力强,所以浪涌来时损坏的机率小而已。实际上,不隔离电源的问题主要是在于浪涌问题,目前这个问题,因为只有LED灯具在大批量应用时,从概率上才能看出其解决的程度,所以很多人没有提出好的防治办法,更多的人则是不知道浪涌电压为何物,很多人。LED灯具坏了,也找不到原因,最后只能一句,什么此电源不稳定就了结了,具体哪里不稳定,他不知道。

非隔离电源一是效率,二是成本上比较有优势。

非隔离电源适合的场合:首先,是室内的灯具,这种室内用电环境较好,浪涌影响小。第二,使用的场合是高压小电流,低压大电流用非隔离没有意义,因为低压大电流非隔离的效率并不比隔离的高,成本也低不到多少去。三,电压相对较稳定的环境中使用非隔离电源。当然,如果有办法解决掉抑制浪涌的问题,那么非隔离电源的应用范围将大大拓宽!

隔离电源因为浪涌的问题,损坏率也不可小觑,一般那种返修回来,击坏保险,芯片,MOS的第一个应该想到是浪涌问题。为了减少损坏率,在设计时就行要考虑到浪涌的因素进去,或是在使用时要告戒用户,尽量避免浪涌发生。(如室内灯具,打雷时暂时先关掉)

综合所述,使用隔离与非隔离很多时候都是因为浪涌这个问题,而浪涌问题和用电环境是息息相关的,所以很多时候使用隔离电源和非隔离电源不能一刀切,非隔离电源在节能,成本上都是很有优势的,所以要科学的选用非隔离还是隔离作为LED驱动电源。


05
 总结


本文介绍了隔离电源和非隔离电源的区别,以及各自的优缺点、适应场合,以及隔离电源的选型注意事项,希望工程师在产品设计时能以此为参考,正确应用电源在产品的研发中,以及在产品出现故障后,快速定位问题所在。


免责声明:本文转自网络,版权归原作者所有,如涉及作品版权问题,请及时与我们联系,谢谢!


加入粉丝交流群


张飞实战电子为公众号的各位粉丝,开通了专属学习交流群,想要加群学习讨论/领取文档资料的同学都可以扫描图中运营二维码一键加入哦~ 

(广告、同行勿入)


电源研发精英圈 开关电源研发工程师精英汇集的平台!我们将定期发送开关电源技术资料与行业新闻,欢迎各位关注。(关键字: 电源开发工程师,LED电源,LED驱动电源,电源工程师, 电源学习,电源知识,电源技术,线性电源,逆变电源,电源芯片,电源模块,电源系统)
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 39浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 129浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 80浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 51浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 115浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 95浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 151浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 60浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 33浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 43浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 105浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 40浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦