大有可为!兰州大学、中国科大、清华大学等高校纷纷突破集成电路关键技术

DT半导体材料 2022-06-06 18:02


现代社会几乎离不开芯片。小到一块电子手表,大到航天飞船、高速铁车,如果没有芯片的支持,一切都无法运行。我国在芯片领域起步不晚,但发展不快,高端芯片依赖国外,每年进口芯片就要花上2万亿,远远超过石油,成为我国第一大进口商品。


尽管我国为国外厂商提供了巨大利润,但并未收获感激,反而被人卡了脖子,想断供就断供,说断供就断供。


“断供”让曾经犯了迷糊的人也清醒过来,一切都得靠自己。我们依靠独立自主发展起来,也得依靠独立自主继续前行。在一系列政策推动之下,各个方面可谓群策群力,各显神通。


高校在解决芯片“卡脖子”难题上,也是纷纷集中优势力量,进行集中攻关,可谓冲锋陷阵。两年过去了,高校在芯片方面又取得哪些“战果”呢?我们一起来看看吧!


兰州大学首颗极大规模全异步电路芯片流片成功


近日,随着一件快递的到来,兰州大学迎来了它的首颗极大规模全异步电路芯片。这是由兰州大学信息科学与工程学院何安平领衔的异步电路与系统团队设计并成功流片的120颗名为LZU_GERM的芯片。

该芯片采用40纳米工艺制程,在每颗仅有96平方毫米的芯片上共集成了3.5亿晶体管和1512个CPU,且每颗芯片的功耗仅有98毫瓦。这些芯片在2021年4月底完成设计,并于2022年5月成功回片。


图为部分LZU_GERM芯片


异步电路的优点主要在于低功耗,而难点在于没有时钟电路作为芯片的全局驱动电路,并且主流的商用EDA软件均是针对同步电路设计的软件。国内优秀的同步电路设计团队很多,但是异步电路设计团队却寥寥无几,有能力生产芯片的团队就更是少之又少。


国外从很早就注意到了异步电路的优势并开始了研究,但是对中国却有严格的技术封锁。何安平带领团队历经9年时间,从异步电路设计方法学开始,一直探索到芯片设计。在主流商用EDA软件的基础上,逐渐突破了异步驱动逻辑设计、异步时序约束、大规模异步电路设计和设计稳定性验证等一系列芯片设计问题。


这款芯片也正是他们团队研究成果的集合,团队采用国际上最先进的异步电路设计方法,在这一枚枚小小的芯片上,每一个异步的CPU核都将由异步的mesh网络连接,数据在CPU中运算后会被mesh网络广播到各个路由节点,并被目标路由节点抓取。这样的工作机制非常适合用于现如今大家非常熟知的类脑计算和其他高并发计算领域。


在国外,Intel、IBM等公司已经用Loihi、TrueNorth等芯片证明了用异步电路做类脑计算,无论是在功耗上还是在性能上均比同时期的同步电路优越。而国内的大规模异步电路设计尚处于初级阶段,未来可期。同时,何安平团队基于异步电路设计的EDA软件“拼图”3.0版历经两次迭代,日臻成熟,成为中国自主研发的第一个异步电路EDA(电子设计自动化)软件,并在OpenI网站开源。


中国科大6G滤波器研发获重大突破


近日,中国科学技术大学(以下简称“中国科大”)网站对外发布,中国科大在6G滤波器领域取得重要进展。该研究成果由微电子学院左成杰教授研究团队在铌酸锂(LiNbO3)压电薄膜上设计并实现了Q值超过100000的高频(6.5 GHz)微机电系统(MEMS)谐振器,与文献中现有的工作相比,把Q值提升了2个数量级。


其中,左成杰教授为论文通讯作者,微电子学院博士生戴忠斌为论文第一作者。此项研究工作得到了国家重点研发计划和中央高校基本科研基金的资助,也得到了中国科大微电子学院、中国科大微纳研究与制造中心、中国科大先进技术研究院和中国科学院无线光电通信重点实验室的支持。



据悉,相关成果以“Ultra HighQLithium Niobate Resonator at 15-Degree Three-Dimensional Euler Angle”为题于5月16日在线发表在电子器件领域知名期刊IEEE Electron Device Letters上。


研究人员提出了一种基于三维欧拉角α在x-cut单晶铌酸锂压电薄膜上设计并制备高频MEMS谐振器的方法。通过设计谐振器的电极结构,工作于6.5 GHz的S1振动模态被激发,并且当声波传播方向(α)位于15°时,谐振器并联谐振频率(fp)处的品质因数(Qp)高达131540,对应的谐振器优值k2·Qp和fp·Qp分别达到6300和8.6×1014Hz(图1)。



图1.新型MEMS谐振器结构设计及性能测试:(a)三维欧拉角的定义;(b)制备的谐振器SEM照片;(c)15°谐振器导纳曲线测试结果


如图2所示,与近10年其它的工作在类似频段的谐振器比较,该新型MEMS谐振器把Q值提升了2个数量级,并且首次突破了谐振频率与Q值乘积(f·Q)这一难以同步提升的谐振器优值极限。更重要的是,相关工作成功发现了利用三维欧拉角可以对铌酸锂薄膜介电损耗和声学损耗进行调控的新机理,为未来微纳器件在高频无线通信、医学超声成像、智能信息处理和物联网传感器等应用领域打开了更多的可能性。



图2.新型MEMS谐振器与近10年其它铌酸锂谐振器Q值的比较


清华制成世界上栅极长度最小晶体管


今年3月,清华大学集成电路学院教授任天令团队在小尺寸晶体管研究方面取得突破,首次制备出亚1纳米栅极长度的晶体管,其具有良好的电学性能。相关成果发表在最新一期《自然》杂志在线版上。


亚1纳米栅长晶体管结构示意图


华中科大——2022年2月,李一伟教授团队,致国力于芯片类器官的高通量培养,终于研制出稳定高效且有独立知识产权的类器官培养芯片,开发出类器官智能制造和高通量生产系统,并开始产学合作实现科研成果转化,有望在近期推向临床,为癌症病人提供个体化类器官构建和药物评估服务。类器官是人工器官的一种,在医学界是当之无愧的前沿研究,这项技术可以助力开发针对中国人的药物、疫苗,将国人“健康密码”掌握在自己手中。


南京大学——2022年1月,王欣然教授团队潜心研究二维半导体单晶,已经取得突破。该团队尝试着改变蓝宝石表面的原子台阶的方向,利用原子层取向,从而诱导成核机制,实现了单晶薄膜向外延为两英寸的生长,芯片性能提升200%。这是全球第一个实现的例子。


浙江大学——2021年12月,发布了“莫干1号”“天目1号”超导量子芯片学术成果。量子计算机的研制已成为全球科技战略的必争高地,量子芯片研制是量子计算机研究的核心。“莫干1号”和“天目1号”由浙朱诗尧领衔的团队研制。天目一号拥有36个量子比特,超越了西方大部分国家,突破了国外的技术壁垒,并绕开了高端光刻机,实现弯道超车。


华中科大——2021年11月,吕志鹏教授带领一支年轻团队,在CAD Contest布局布线算法竞赛中夺得全球第一。EDA是电子设计的基石产业,被誉为“芯片之母”,“谁掌握了EDA,谁就有了芯片领域的主导权。”此届算法竞赛共有来自12个国家和地区的137支队伍参加,包括加州大学伯克利分校、东京大学等众多国内外名校与研究机构。


清华大学——2021年10月,在路新春教授团队在芯片设备方面取得突破,国内首台12英寸超精密晶圆减薄机(Versatile-GP300)正式出机,并已经发往国内某集成电路龙头企业。我国的晶圆减薄机一直就依赖海外进口,国产从无产出。清华大学生产的该设备应用于3D IC制造、先进封装等芯片制造大生产线,打破了外国集团的长期技术垄断。


武汉大学——2021年10月,该校致力于解决室外卫星信号对于室内空间不可用不可达、室内定位精度低的技术难题,首次突破了精准测距、窄频带漫游和多源融合定位三大核心技术,发布了全球首款基于RISC-V高精度室内定位音频芯片,拥有完全自主的核心知识产权,突破了消费级智能终端室内高精度定位“卡脖子”关键技术,用中国芯创造导航定位中国方案。


云南大学——2021年7月,该校材料与能源学院成功突破硫化铂和石墨烯融合,解决了相关物理问题,优化了两种材料的融合工艺。从综合性能来看,硫化铂优于石墨烯和单晶硅,很有可能成为我国芯片代工领域媲美 国外的关键材料。硫化铂可以弥补石墨烯晶圆管的不足,拥有较宽的能量间隙和高的架空性,在光、电和磁方面表现也很出色。硫化铂内部结构稳定性较好,并且杂质较少,很有可能成功延续摩尔定律。


中国科大——2021年6月,郭光灿院士团队在光量子芯片研究中取得重要进展,在国际上首次展示了波导模式编码的两比特受控非门控操作。该实验中的量子受控非门能够实现对两个波导模式编码量子比特的纠缠,平均保真度在0.87到0.91之间。该成果为波导模式编码的量子操作铺平了道路,也可用于片上多自由度光量子信息处理,为实现大规模光量子系统奠定了基础。


湖南大学——2021年5月,刘渊教授团队通过使用范德华金属集成的方法,实现了超短沟道的垂直场效应晶体管。通过对垂直器件进行微缩,垂直晶体管的开关比性能提升了两个数量级。该项研究有望为生产出拥有超高性能的亚3nm级别的晶体管,制备因工艺水平限制而出现不完美界面的范德华异质结器件,为提升芯片性能提供了一种全新的低能耗解决方案,为“后摩尔时代”半导体器件性能提升增添了希望。


国防科大——2021年2月,该校计算机学院QUANTA团队联合军事科学院、北京量子信息科学研究院、中山大学光电材料与技术国家重点实验室等单位,研发出一款新型可编程硅基光量子计算芯片,实现了多种图论问题的量子算法求解,有望未来在大数据处理等领域获得应用。这是量子计算在工程化方面等的“卡脖子”问题。


清华大学——2021年2月,唐传祥研究组与合作团队在《自然》上发表研究论文《稳态微聚束原理的实验演示》,报告了一种新型粒子加速器光源“稳态微聚束”的首个原理验证实验。这项研究有望解决自主研发光刻机中最核心(极紫外光源)的“卡脖子”难题。


北京大学——2021年1月,彭练矛团队在以石墨烯为基础的碳基领域取得突破,不仅掌握了整套碳基CMOS集成电路无掺杂的制备技术,而且还制作出了栅长达到5nm工艺的碳晶体管,尺寸方面与硅基无异,综合性能却超过了硅基的十倍还多。从理论上讲,碳基芯片可以绕过光刻机。这项堪称“奇迹”的CMOS技术,不仅有机会解开目前光刻难题带来的芯片困境,同时也让我国在接下来的“碳时代”处在了领跑的位置。


哈工大——2021年1月,韩杰才院士团队,与香港城市大学、麻省理工学院等单位合作,在金刚石芯片领域取得新进展。“金刚石”芯片被誉为新型半导体材料的终极形态,除了大家理解的耐用性之外,整体性能远超目前主流的硅基芯片。这为实现芯片弯道超车提供了极大机会。

……


从上面我们可以看出,近两年来我国多所高校在芯片方面取得了技术突破,这些都是“卡脖子”难题,既有传统芯片的技术突破,也有弯道超车的技术创新,还有新基材料的发现,更是在光量子芯片上不断取得进展,说明我国高校在攻克芯片关键技术方面正在全面发力并不断突破“卡脖子”难题,有可能在较短的时间之内使我国全面掌握完整的芯片高端技术。



源:用芯CBO


免责声明 | 部分素材源自网络,转载仅作为行业分享交流,不代表本公众号观点,版权归原作者所有。如涉侵权,请联系我们处理。另外,如若转载本文,请标明出处。
DT半导体材料 聚焦于半导体材料行业的最新动态
评论
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 165浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 181浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 92浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 97浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 141浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 103浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 111浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 134浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 138浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 86浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 109浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 121浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 85浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 142浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦