手机无线充电中的PWM电源控制策略

原创 工程师看海 2022-06-06 07:16
▼关注公众号:工程师看海▼

电源设计中,环路反馈是非常有意思也是比较难的一个设计要点。我们在应用中,如果需要动态调整电源输出,应该怎么办呢?增加通信接口虽然方便,但是会增加成本,工程师看海今天介绍一种省成本的方案:基于PWM反馈的电源控制策略,一起来看看吧。

获取仿真文件,公众号“工程师看海”后台回复:电源PWM

馈点在IC内部

在我们日常应用过程中,电源反馈点(后文简称馈点)的位置,有两种方案,一种是电源输出不变,馈点集成在IC内部,对于这类普通电源而言,它的输出通常是不可更改的;对于高级一些的电源,虽然馈点也在IC内部,但是可以通过软件配置选择不同的输出档位,产生不同的输出电压。

馈点在IC外部

另一种方案是输出可调,具体是通过外接匹配电阻来控制其输出电压,这个优点是可以根据我们的需求,设置匹配电阻,进而控制其输出电压,比如下图,输出电压和电阻的关系可以通过下面公式得到。

但是,有一些特殊的应用场景,我们需要根据负载需求实时控制电源的输出电压,那么上面两种馈点的设计,就不能直接满足我们的需求了(一种是馈点在IC内部,输出不可调;一种是输出通过外接电阻设置,电阻固定后输出也固定,不能调节)。

在手机设计领域,一个经典的应用场景是无线充电,当发射端TX和接收端RX距离稍微变远时,我们需要增加TX输出功率,通过增加TX的电压来增加功率的话,我们可以怎么做呢?

有人说,选择带通信接口的电源,比如I2C接口,负载和电源通讯,负载需要高压时,就让电源增加输出电压,这个方案可行,但是意味着用功能更丰富的电源,这就要增加成,都是钱啊,在几万、十几万的出货量面前,一毛钱也是钱!


基于PWM反馈的电源控制策略

那么介绍下今天的主角,基于PWM反馈的电源控制策略,不需要额外增加通信接口,就可以实现根据负载要求动态调整输出电压,既满足功能需求,又降低成本。

这个实现方案是在外接馈点的基础上实现的,其原理架构如下图。

负载通过一个IO引脚和电源馈点连接,这个IO引脚通过PWM来动态调整馈点电压,控制电源输出负载需要的电压。

我们先看下没有PWM时,电源通过反馈调节输出的工作原理,

电源刚启动时,会根据馈点匹配电阻,来输出电压,根据下图的电源框图,输出电压计算公式:

反馈点的电压为:

IC内部会通过误差放大器,将反馈电压Vb与参考电压Vr进行比较,如果Vb的电压低于参考电源Vr,电源IC就会增加输出Vo,直到Vb=Vr;

反过来,如果反馈电压Vb高于参考电压Vr,那么电源IC就会降低输出电压Vo,直到Vb=Vr;

上面对于电源反馈的讨论与介绍,我在往期文章《LDO基本原理介绍》有过更详细的介绍。

https://www.dianyuan.com/eestar/article-1422.html

如果此时负载需要调节电压,就调节pwm占空比,来调节馈点电压,进而调节Vo。


引入PWM的反馈调节机制原理

引入PWM的反馈调节的框图如下,如果负载希望前端电源增加Vo,就会减小PWM的占空比,PWM信号的占空比减小后,经过RC滤波得到的直流电平也会减小,该直流电平与反馈电压叠加后,使得Vb减小,电源IC将Vb与Vr对比后,发现Vb变小(会判定为Vo减小),就会增加Vo,进而使得Vb增加,这个过程一直持续到Vb=Vr;此时负载就得到了它需要的电压值。

反之亦然:

如果负载希望前端电源减小Vo,就会增加PWM的占空比,PWM信号的占空比增加后,经过RC滤波得到的直流电平也会增加,该直流电平与反馈电压叠加后,使得Vb增加,电源IC将Vb与Vr对比后,发现Vb变大(会判定为Vo变大),就会减小Vo,直到Vb=Vr,负载就得到了它需要的电压。

仿真验证

对下图线性电源进行仿真(一般线性电源噪声小,建议实际使用PWM反馈调节时,优先考虑开关电源),灰色框内表示IC本体,外部电阻、电容匹配网络一定要仔细计算,下图给的是参考值。

获取仿真文件,公众号“工程师看海”后台回复:电源PWM

在占空比为50%时,电源输出为3.0V。

下图红色为A点PWM波形,频率为10KHz,占空比为50%,蓝色为馈点B点电压波形,是滤波后的结果,Vb大约是2.2V。

占空比是50%时,红色曲线输出电压Vo大约是3.0V。

我们减小PWM的占空比到5%,根据前文分析,其输出电压应该会增加,下图红色是输出电压Vo,蓝色是馈点电压波形Vb,可以看到,PWM信号被滤波后,输出电压Vo比占空比为50%时要大,有3.0V上升到3.2V,并稳定在3.2V。

反过来,我们增加PWM占空比到95%,根据前文分析,其输出电压应该会减小。下图红色是输出电压,蓝色是馈点电压Vb的波形,可以看到,PWM信号被滤波后,随着馈点电压的上升,输出电压Vo逐渐减小,最终稳定在2.8V。

以上就是基于PWM反馈的电源控制策略。

---The end---

限时免费扫码进群,交流更多行业技术

推荐阅读

电池、电源

硬件文章精选

华为海思软硬件开发资料

感谢点赞、在看、分享,让知识变得更简单
工程师看海 专注硬件设计、PCB走线、模拟信号处理,微信公众号:工程师看海
评论
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 513浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 497浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 69浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 85浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 201浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 449浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 113浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 331浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 500浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 533浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 465浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 474浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦