卡尔曼滤波_附代码


欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 954221326


高可靠新能源行业顶尖自媒体


在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不可少的,希望大家不忘初心,怀有一颗敬畏之心,做出更好的产品!

电力电子技术与新能源论坛

www.21micro-grid.com


小编推荐值得一看的书单电力电子技术与新能源推荐书单


  • The Power MOSFET 应用手册

  • [视频]反激电路Flyback

  • 车用永磁同步电机控制及弱磁方法

  • [视频]IGBT模块技术参数详解

  • [视频]英飞凌双脉冲实验教具使用说明

  • 碳化硅在光伏逆变器中的应用-阳光电源

  • 华为精华资料—终端互连PCB设计规范分享

  • 复旦电赛培训_辅助电源_刘祖望_电力电子技术与新能源

  • 环路指导书LOOP Training

  • [视频]浙大碳化硅技术发展与应用介绍

本文中公式较长,请滑动查看,或点击阅读原文在Github中下载PDF

卡尔曼滤波

卡尔曼滤波以其发明者鲁道夫.E.卡尔曼(Rudolph E. Kalman)命名,但根据文献可知卡尔曼并非第一个提出该算法的人,Peter Swerling在更早之前就提出了类似算法1

卡尔曼滤波的典型实例是从一组有限、包含噪声的观测序列中预测出物体的位置和速度。最为常见的卡尔曼滤波器是锁相环。

线性卡尔曼滤波

待估计模型

卡尔曼滤波建立在隐马尔可夫模型上,其基本动态系统使用一个马尔可夫链表示。

img1

使用公式表示即,对于需要求解的状态  满足

其中  为  状态的转移矩阵,在现实的过程中他可能是时变的,但是在这里假设其为常量。 矩阵  是可能存在的控制器  的输入-控制模型。对于这一隐马尔可夫链有观测值  满足

其中  矩阵  为观测模型,在真实情况中观测模型可能会是时变的,但在此处假设其为常量。

随机变量  分别为过程噪声和观测噪声,假设他们是独立的高斯白噪声且

推导

卡尔曼滤波器是建立在贝叶斯滤波器的基础上的2,首先介绍贝叶斯滤波器。

贝叶斯准则与全概率公式

贝叶斯准则:

全概率公式:

贝叶斯滤波器

贝叶斯滤波器的思想即使用已有的观测值和控制输入来估计当前时刻的状态,对于状态  ,观测值  ,控制量 ,写成概率的形式即:

根据贝叶斯准则

分母与  无关,使用常数  代替,由于隐马尔可夫链的性质,某时刻的观测值只与其状态有关,则   上式可以化简为:

可以理解为使用先验和似然估计后验。则先验为:

代入全概率公式,由于积分中乘积的前一项为根据前一时刻状态预测下一时刻状态,根据马尔可夫链的性质,这一概率与观测值  无关。同时,马尔可夫性质表明只有当前的控制信号和上一时刻的状态对当前时刻的状态有影响,则积分乘积前一项中的  可以被化为  ,乘积后一项中的  可以被化为 。同时观察可知乘积的第二项即 

后验为:

代入待估计模型

求解先验分布

由于假设噪声符合高斯分布,则  也应符合高斯分布,设其均值为  ,方差  。对于先验公式,有

则  可以表示成  的形式,其中  为常数,有

两个高斯分布的乘积  也为高斯分布,而  是关于  的二次型,则求解   可以得到该分布的均值 ,  为其方差的倒数。可以解得:

为了求解积分,需要使用一些技巧来简化运算,定义二次型函数

可以发现  为  的二次型,且有  ,则可以将  拆分来去积分。定义

由于  为关于  的二次型,且  符合高斯分布,则使用求一阶导数和二阶导数的方法来求取其方差  和均值 

一阶导数:

令一阶导数等于零


二阶导数:

则得到先验分布 

求解后验分布

由系统的观测方程可以得到  ,已经求得先验分布 ,则后验分布

可以简化为  ,其中

由于  为  的二次型,同时  符合高斯分布,继续通过求解一阶导数和二阶导数的方法求均值和方差。

一阶导数:

令一阶导数等于零

化简  可以得到一个更常见的形式:

二阶导数:

将  代入  的表达式中,可以得到更加简化的表达形式

结论

至此,卡尔曼滤波器的五条公式全部推出,分别为式(1~5),即:

可以看到,卡尔曼滤波器即是在贝叶斯滤波器的基础上加入了带有噪声的模型。观察  可以发现

即当观测误差趋于 0 时,引入观测值进行修正的权重将增大;当预测误差趋于 0 时,引入观测值进行修正的权重将减小并趋于 0。

卡尔曼滤波器的实现

卡尔曼滤波器通过如下的算法进行实现:

img2

接下来在倒立摆模型中实现卡尔曼滤波器,倒立摆模型预测方程近似如下:

其中  为小车位移、杆角度、小车速度、杆角速度, 为小车重量、杆重量, 为杆长度, 为向小车施加的力, 在离散系统中为两次更新间经过的时间,

在实现中一般不希望或不能观测所有的变量,而且在观测中会引入误差,假设只有小车速度和杆角速度能被测量,观测方程如下:

使用卡尔曼滤波器实现状态估计。使用 Open AI 的开源库 gym 中的CartPole-v1 进行仿真,使用 PID 算法进行控制,由于本文只关心卡尔曼滤波,PID参数较为粗放。仿真结果如下图:


卡尔曼滤波器的 python 代码如下:

class KFilter:
def __init__(self, f_mat, b_mat, q_mat, h_mat, r_mat):
self.f_mat = f_mat
self.b_mat = b_mat
self.q_mat = q_mat
self.h_mat = h_mat
self.r_mat = r_mat

def kal_filter(self, x_mat, p_mat, z_mat, action):
x_predict = self.f_mat * x_mat + self.b_mat * action
p_predict = self.f_mat * p_mat * self.f_mat.T + self.q_mat
k_num = p_predict * self.h_mat.T * np.linalg.pinv(self.h_mat * p_predict * self.h_mat.T + self.r_mat)
x_mat = x_predict + k_num * (z_mat - self.h_mat * x_predict)
p_mat = (np.eye(4) - k_num * self.h_mat) * p_predict
return x_mat, p_mat

倒立摆的 PID 算法修改自 GitHub 3

考文献

由于公众号文章无法插入外链,以下引用均未附原文链接

[1] Wikipedia

[2] 卡尔曼滤波器的数学推导—木独—CSDN

[3] The PID control implementation of cart-pole environment in gym—lukewys—Github


转到Github查看全部代码:

https://github.com/Versemongerr/Kalman_PID_Cartpole


文章首尾冠名广告正式招商,功率器件,SiC,GaN,数字电源,新能源厂家都可合作,有意者加微信号1768359031详谈。

说明:本文来源网络;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。

电力电子技术与新能源通讯录:

Please clik the advertisement and exit

重点

如何下载《电力电子技术板块内高清PDF电子书


点击文章底部阅读原文,访问电力电子技术与新能源论坛(www.21micro-grid.com)下载!


或者转发所要文章到朋友圈不分组不屏蔽,然后截图发给小编(微信1413043922),小编审核后将文章发你!


推荐阅读:点击标题阅读

LLC_Calculator__Vector_Method_as_an_Application_of_the_Design

自己总结的电源板Layout的一些注意点

High_Frequency_Transformers_for_HighPower_Converters_Materials

华为电磁兼容性结构设计规范V2.0

Communication-less Coordinative Control of Paralleled Inverters

Soft Switching for SiC MOSFET Three-phase Power Conversion

Designing Compensators for Control of Switching Power Supplies

100KHZ 10KW Interleaved Boost Converter with full SiC MOSFET

华为-单板热设计培训教材


看完有收获?请分享给更多人


公告:

电力电子技术与新能源微信群,欢迎加小编微信号:(QQ号)1413043922,请注明研究方向或从事行业(比如光伏逆变器硬件),小编对电力电子技术与新能源及微电网的市场发展很看好,对其关键技术很感兴趣,如有技术问题,欢迎加小编微信,共同讨论。

在这里有电力电子技术:光伏并网逆变器(PV建模,MPPT,并网控制,LCL滤波,孤岛效应),光伏离网,光伏储能,风电变流器(双馈、直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC(LLC,移相全桥,DAB),储能(锂电池、超级电容),低电压穿越(LVRT),高电压穿越,虚拟同步发电机,多智能体,电解水,燃料电池,能量管理系统(直流微网、交流微网)以及APF,SVG ,DVR,UPQC等谐波治理和无功补偿装置等。
PSCAD/MATLABsimulink/Saber/PSPICE/PSIM——软件仿真+DSP+(TI)TMS320F2812,F28335,F28377,(Microchip)dsPIC30F3011,FPGA,ARM,STM32F334——硬件实物。
欢迎技术人员加入,多多交流,共同进步!


更多精彩点下方阅读原文

      点亮在看,小编工资涨1毛!

电力电子技术与新能源 电力电子技术,交直流微电网,光伏并网逆变器,储能逆变器,风电变流器(双馈,直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC,锂电池,超级电容,燃料电池,能量管理系统以及APF,SVG ,UPQC等
评论
  • 前言在快速迭代的科技浪潮中,汽车电子技术的飞速发展不仅重塑了行业的面貌,也对测试工具提出了更高的挑战与要求。作为汽车电子测试领域的先锋,TPT软件始终致力于为用户提供高效、精准、可靠的测试解决方案。新思科技出品的TPT软件迎来了又一次重大更新,最新版本TPT 2024.12将进一步满足汽车行业日益增长的测试需求,推动汽车电子技术的持续革新。基于当前汽车客户的实际需求与痛点,结合最新的技术趋势,对TPT软件进行了全面的优化与升级。从模型故障注入测试到服务器函数替代C代码函数,从更准确的需求链接到P
    北汇信息 2025-03-13 14:43 40浏览
  • 一、行业背景与需求痛点智能电子指纹锁作为智能家居的核心入口,近年来市场规模持续增长,用户对产品的功能性、安全性和设计紧凑性提出更高要求:极致空间利用率:锁体内部PCB空间有限,需高度集成化设计。语音交互需求:操作引导(如指纹识别状态、低电量提醒)、安全告警(防撬、试错报警)等语音反馈。智能化扩展能力:集成传感器以增强安全性(如温度监测、防撬检测)和用户体验。成本与可靠性平衡:在复杂环境下确保低功耗、高稳定性,同时控制硬件成本。WTV380-P(QFN32)语音芯片凭借4mm×4mm超小封装、多传
    广州唯创电子 2025-03-13 09:24 41浏览
  • DeepSeek自成立之初就散发着大胆创新的气息。明明核心开发团队只有一百多人,却能以惊人的效率实现许多大厂望尘莫及的技术成果,原因不仅在于资金或硬件,而是在于扁平架构携手塑造的蜂窝创新生态。创办人梁文锋多次强调,与其与大厂竞争一时的人才风潮,不如全力培养自家的优质员工,形成不可替代的内部生态。正因这样,他对DeepSeek内部人才体系有着一套别具一格的见解。他十分重视中式教育价值,因而DeepSeek团队几乎清一色都是中国式学霸。许多人来自北大清华,或者在各种数据比赛中多次获奖,可谓百里挑一。
    优思学院 2025-03-13 12:15 47浏览
  • 在海洋监测领域,基于无人艇能够实现高效、实时、自动化的海洋数据采集,从而为海洋环境保护、资源开发等提供有力支持。其中,无人艇的控制算法训练往往需要大量高质量的数据支持。然而,海洋数据采集也面临数据噪声和误差、数据融合与协同和复杂海洋环境适应等诸多挑战,制约着无人艇技术的发展。针对这些挑战,我们探索并推出一套基于多传感器融合的海洋数据采集系统,能够高效地采集和处理海洋环境中的多维度数据,为无人艇的自主航行和控制算法训练提供高质量的数据支持。一、方案架构无人艇要在复杂海上环境中实现自主导航,尤其是完
    康谋 2025-03-13 09:53 44浏览
  • 北京时间3月11日,国内领先的二手消费电子产品交易和服务平台万物新生(爱回收)集团(纽交所股票代码:RERE)发布2024财年第四季度和全年业绩报告。财报显示,2024年第四季度万物新生集团总收入48.5亿元,超出业绩指引,同比增长25.2%。单季non-GAAP经营利润1.3亿元(non-GAAP口径,即经调整口径,均不含员工股权激励费用、无形资产摊销及因收购产生的递延成本,下同),并汇报创历史新高的GAAP净利润7742万元,同比增长近27倍。总览全年,万物新生总收入同比增长25.9%达到1
    华尔街科技眼 2025-03-13 12:23 48浏览
  • 曾经听过一个“隐形经理”的故事:有家公司,新人进来后,会惊讶地发现老板几乎从不在办公室。可大家依旧各司其职,还能在关键时刻自发协作,把项目完成得滴水不漏。新员工起初以为老板是“放羊式”管理,结果去茶水间和老员工聊过才发现,这位看似“隐形”的管理者其实“无处不在”,他提前铺好了企业文化、制度和激励机制,让一切运行自如。我的观点很简单:管理者的最高境界就是——“无为而治”。也就是说,你的存在感不需要每天都凸显,但你的思路、愿景、机制早已渗透到组织血液里。为什么呢?因为真正高明的管理,不在于事必躬亲,
    优思学院 2025-03-12 18:24 81浏览
  •        随着人工智能算力集群的爆发式增长,以及5.5G/6G通信技术的演进,网络数据传输速率的需求正以每年30%的速度递增。万兆以太网(10G Base-T)作为支撑下一代数据中心、高端交换机的核心组件,其性能直接决定了网络设备的稳定性与效率。然而,万兆网络变压器的技术门槛极高:回波损耗需低于-20dB(比千兆产品严格30%),耐压值需突破1500V(传统产品仅为1000V),且需在高频信号下抑制电磁干扰。全球仅有6家企业具备规模化量产能力,而美信科
    中科领创 2025-03-13 11:24 40浏览
  • 在追求更快、更稳的无线通信路上,传统射频架构深陷带宽-功耗-成本的“不可能三角”:带宽每翻倍,系统复杂度与功耗增幅远超线性增长。传统方案通过“分立式功放+多级变频链路+JESD204B 接口”的组合试图平衡性能与成本,却难以满足实时性严苛的超大规模 MIMO 通信等场景需求。在此背景下,AXW49 射频开发板以“直采+异构”重构射频范式:基于 AMD Zynq UltraScale+™ RFSoC Gen3XCZU49DR 芯片的 16 通道 14 位 2.5GSPS ADC 与 16
    ALINX 2025-03-13 09:27 32浏览
  • 引言汽车行业正经历一场巨变。随着电动汽车、高级驾驶辅助系统(ADAS)和自动驾驶技术的普及,电子元件面临的要求从未如此严格。在这些复杂系统的核心,存在着一个看似简单却至关重要的元件——精密电阻。贞光科技代理品牌光颉科技的电阻选型过程,特别是在精度要求高达 0.01% 的薄膜和厚膜技术之间的选择,已成为全球汽车工程师的关键决策点。当几毫欧姆的差异可能影响传感器的灵敏度或控制系统的精确性时,选择正确的电阻不仅仅是满足规格的问题——它关系到车辆在极端条件下的安全性、可靠性和性能。在这份全面指南中,我们
    贞光科技 2025-03-12 17:25 92浏览
  • 文/Leon编辑/cc孙聪颖作为全球AI领域的黑马,DeepSeek成功搅乱了中国AI大模型市场的格局。科技大厂们选择合作,接入其模型疯抢用户;而AI独角兽们则陷入两难境地,上演了“Do Or Die”的抉择。其中,有着“大模型六小虎”之称的六家AI独角兽公司(智谱AI、百川智能、月之暗面、MiniMax、阶跃星辰及零一万物),纷纷开始转型:2025年伊始,李开复的零一万物宣布转型,不再追逐超大模型,而是聚焦AI商业化应用;紧接着,消息称百川智能放弃B端金融市场,聚焦AI医疗;月之暗面开始削减K
    华尔街科技眼 2025-03-12 17:37 146浏览
  • 一、行业背景与用户需求随着健康消费升级,智能眼部按摩仪逐渐成为缓解眼疲劳、改善睡眠的热门产品。用户对这类设备的需求不再局限于基础按摩功能,而是追求更智能化、人性化的体验,例如:语音交互:实时反馈按摩模式、操作提示、安全提醒。环境感知:通过传感器检测佩戴状态、温度、压力等,提升安全性与舒适度。低功耗长续航:适应便携场景,延长设备使用时间。高性价比方案:在控制成本的同时实现功能多样化。针对这些需求,WTV380-8S语音芯片凭借其高性能、多传感器扩展能力及超高性价比,成为眼部按摩仪智能化升级的理想选
    广州唯创电子 2025-03-13 09:26 33浏览
  • 文/杜杰编辑/cc孙聪颖‍主打影像功能的小米15 Ultra手机,成为2025开年的第一款旗舰机型。从发布节奏上来看,小米历代Ultra机型,几乎都选择在开年发布,远远早于其他厂商秋季主力机型的发布时间。这毫无疑问会掀起“Ultra旗舰大战”,今年影像手机将再次被卷上新高度。无意臆断小米是否有意“领跑”一场“军备竞赛”,但各种复杂的情绪难以掩盖。岁岁年年机不同,但将2-3年内记忆中那些关于旗舰机的发布会拼凑起来,会发现,包括小米在内,旗舰机的革新点,除了摄影参数的不同,似乎没什么明显变化。贵为旗
    华尔街科技眼 2025-03-13 12:30 60浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦