开发者分享|第三代ZynqRFSoC器件射频数据转换器应用:时钟设计-上

FPGA开发圈 2022-05-30 11:14

本文作者:赛灵思工程师 Shengjie Li


Zynq UltraScale+ RFSoC 是业界首款单芯片自适应无线电平台,在一款芯片内集成射频直采数据转换器、单芯片软决策前向纠错核(SD-FEC)、FPGA逻辑、完整的ARM处理器子系统和高速收发器等。


第三代RFSoC器件与前几代产品相比,射频输入输出频率响应已扩展至全面支持6GHz以下频段,可帮助用户开发尖端RF设计,例如大规模MIMO无线电、5G基带、固定无线接入、测试测量与相控阵雷达等等。第三代器件14bit分辨率ADC最大采样速率增加到5.0GSPS,14bit分辨率DAC最大采样速率增加到10.0GSPS。用户可以参考XMP105详细了解Zynq RFSoC系列产品具体参数及选型指南。


本次将分上下篇介绍基于Xilinx Zynq UltraScale+ RFSoC ZCU216评估套件的详细内容:

1. 第三代RFSoC 器件时钟转发特性。

2. ZCU216时钟结构及可行的时钟设计方案。

3. 在Vivado中创建基于IP集成器(IP Integrator)的设计。


4. 在Vitis中创建基于ARM的BareMetal程序设计。

5. 代码简要分析。

6. 硬件环境及测试结果。


本文用于示例的软件工具、驱动版本、硬件版本及文档版本如下:

1. ZCU216 Rev-A02(Engineer Sample)

2. CLK104

3. Vivado 2021.2 + Vitis 2021.2

4. PG269 V2.6 October 27, 2021

5. Software Driver: rfdc v11.0


1. 第三代RFSoC 器件时钟转发特性

RFSoC在芯片内集成了数据转换器,第三代RFSoC系列器件均包含4个ADC Tile和4个DAC Tile,每个ADC和DAC Tile内可能包含1个(ZU43DR)或2个(ZU47DR/48DR)或者4个(ZU49DR)Channel,这取决于芯片型号。以ZCU216开发板上的芯片为例,ZU49DR的每个ADC Tile内包含4路ADC,每个DAC Tile内包含4路DAC。


每个Tile都可以独立配置,工作在不同的采样时钟频率上,采样时钟可以来自于外部高频时钟输入,可以来自于每个Tile内部PLL倍频后的时钟,也可以来自于其他Tile分发的参考时钟。

第三代RFSoC器件相比之前几代产品引入了时钟转发特性,不再需要为每个Tile都提供独立的采样时钟,节省了引脚数量,降低了外围电路的复杂度。


时钟转发的方式共分为两种,一种是参考时钟转发,一种是采样时钟转发。


所谓参考时钟转发,是指外部时钟芯片提供低噪声低频时钟到一个ADC/DAC Tile的专用时钟管脚,该时钟将在Tile间转发,通过每个Tile内的PLL倍频出所需的采样时钟;

而采样时钟转发有两种途径,一是从外部时钟芯片直接提供低噪声高频的采样时钟到一个ADC/DAC Tile的专用时钟管脚,采样时钟将在Tile间分发,无需通过内部PLL倍频,直接提供给ADC/DAC Channel作为采样时钟;

时钟芯片提供低噪声低频时钟到一个ADC/DAC Tile的专用时钟管脚,该时钟在此Tile内通过PLL倍频到采样频率,随后将此采样时钟在Tile间分发。

以上仅为时钟分发方式的简化解释,会有一些使用的限制和建议,建议用户参考PG269 Chapter 4 Clocking-On-chip Clock Distribution章节阅读。


用户也可以打开Vivado,选择器件型号后在RF Data Converter IP内根据原理图和目标设计进行配置,如果时钟设计存在问题,工具会给予一定的报警和提示。


值得注意的是,RF Data Converter IP内的选项和上述的两种分发方式不是完全匹配的。当使用采样时钟分发方式时,在IP内需要勾选的是Input Refclk。ADC Tile 1(Tile 225)和DAC Tile 1(Tile 229)作为采样时钟输入源,其他的ADC和DAC Tile选择Tile 1作为时钟源。


2. ZCU216时钟结构及可行的时钟设计方案

本节仅覆盖ZCU216开发板与RF数据转换器相关的时钟部分,这部分时钟均由扩展子卡CLK104提供。

如下所示为CLK104板上的功能示意图:

通过一个时钟芯片为DAC提供接近10GSPS的低噪声采样时钟是很难实现的,CLK104板采用两级PLL方案。


第一级LMK04828B是一个双环路抖动清除器和时钟发生器,一级回路的参考输入可为板上的10MHz TCXO、外部参考时钟(比如从SMA100B输出低噪声时钟),或SFP恢复时钟。二级回路的参考输入为板上的160MHz VCXO,可输出低相噪的时钟、同步信号。其中DAC_REFCLK和ADC_REFCLK可作为ADC/DAC低频参考时钟输入;PL_CLK,AMS_SYSREF和PL_SYSREF均用作MTS(Multi-Tile Synchronization)应用,我们将在未来博客中详细描述MTS相关应用;


第二级LMX2594接收第一级输出时钟,将其倍频到采样频率,直接输出到ADC/DAC Tile。


这三颗时钟芯片均由SPI接口控制,板上有一颗IIC to SPI桥接芯片,FPGA通过IIC接口对此转换芯片进行控制,进而控制三颗时钟芯片。除此以外还有一种更为简单的方式,ZCU216板上带有一颗TI的MSP430 MCU,其IIC接口通过IIC Switch也可以连接到这几颗时钟IC上,用户可以参考XTP580,使用BoardUI实现对时钟的配置。


ZCU216上的芯片型号为ZU49DR,其4个ADC Tile和4个DAC Tile都有专用的模拟时钟输入管脚,但只有两个ADC Tile(Bank 225/226)和两个DAC Tile(Bank 229/230)的时钟管脚被引出。如下表所示为详细连接关系:

本文后续将会展示以下的时钟方案配置:

使用LMX2594输出高频采样时钟分发方式,从ADC Tile1和DAC Tile1输入。设定ADC 采样频率为2000MHz,DAC采样频率为6400MHz。


3. 在Vivado中创建基于IP集成器

    (IP Integrator)的设计

本节需要读者对基于Vivado的IPI设计比较熟悉,将不会对较简单的操作步骤进行详述。如何使用此Blog提供的TCL文件重建Vivado工程请参考附录。

Ø  打开Vivado 2021.2,新建工程,名为rfsoc_zcu216_clocking。

Ø  选择板卡ZCU216 EVB或ZCU216 ES EVB,根据板卡型号决定,二者bitstream不兼容。

Ø  在工程界面内创建Block Design,默认名为design_1。

Ø添加Zynq UltraScale+ MPSoC IP,Run Block automation,使用板卡默认配置。

Ø  修改Zynq配置,PS-PL Configuration界面下将AXI HPM0/1 FPD接口关闭,勾选AXI HPM0 LPD,其他保持默认。

Ø  添加Zynq UltraScale+ RF Data Converter IP。

Ø  修改RF Data Converter配置。


1. 切换Converter Setup为Advanced模式。

2. 使能全部ADC和DAC的每个Channel,其他所有配置大多数都是可以通过API修改的,保持默认即可,后续将会介绍如何通过API修改。

3. 修改全部ADC的Samples per AXI4-Stream Cycle为8,DAC为16,这是为了避免AXI-Stream接口时钟频率超出器件频率上限。

4.在System Clocking界面按下图配置,如上一节所示,我们将先按ADC 2GSPS,DAC 6.4GSPS进行配置,使用采样时钟分发方式。IP的输出时钟可以用于倍频产生AXI4-Stream数据接口的时钟,因此我们先保持和Fabric clock 频率8分频的关系进行配置。

5. Advanced界面保持默认,无需勾选。


Ø Run Block Automation,将RFDC IP AXI-Lite接口通过Interconnect连接到Zynq LPD接口实现地址映射。

Ø 为AXI4-Stream接口提供合适的时钟和复位。


1. 点击BD界面上方Run Block Automation。

2. 由于所有ADC/DAC采样率是一致的,可以使用一个MMCM产生ADC/DAC所需的数字时钟。在弹出界面中勾选ADC 0-3的时钟源为ADC0,DAC0-3的时钟源为DAC0。

3. 工具将会自动例化两个Clocking Wizard IP,adc0_clk_wiz使用IP输出的31.25MHz的时钟作为输入,倍频输出200MHz时钟供给Master接口。Dac0_clk_wiz使用IP输出的50MHz时钟作为输入,倍频输出400MHz时钟供给给Slave接口。

4. 修改clocking wizard复位极性为低电平有效。


5.例化两个Processor System Reset IP,并连接peripheral_aresetn到RFDC IP的s/m_axis_aresetn管脚上。其中Slave AXI-Stream接口是DAC的数字接口,Master AXI-Stream是ADC的数字接口。

6. 例化一个AXI GPIO IP,用于控制时钟板CLK104上的SPI SDO选通。设定为输出,位宽为2,初始值设定为0x0。


7. 引出AXI GPIO IP,命名为spi_mux。


Ø  完整的Block Design大致如下:

Ø  在BD中右键Validate design,确保没有报错。

Ø  创建顶层文件,右键BD,Create HDL Wrapper,选择Let Vivado manage wrapper and auto-update。

Ø  添加管脚约束,RFDC相关管脚为专有管脚,IP内包含管脚约束,用户无需为此添加。

Ø  生成bitstream,检查工程是否有时序违例。

Ø 导出工程XSA文件,File-Export-Export Hardware,勾选Include Bitstream,选择导出目录。


更多文章详情请关注

第三代Zynq RFSoC器件射频数据转换器应用: 时钟设计-下



FPGA开发圈 这里介绍、交流、有关FPGA开发资料(文档下载,技术解答等),提升FPGA应用能力。
评论
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 123浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 55浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 90浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 93浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 81浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 94浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 91浏览
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 84浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 98浏览
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 77浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 119浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 71浏览
我要评论
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦