开关电源环路学习笔记(8)-如何快速看出零点和极点

原创 硬件工程师炼成之路 2022-05-30 08:00

不知不觉,环路内容已经写了7节了,以理论分析为主,下面来说说兄弟们都很关心的内容——零点和极点。


前面几节内容,我们已经将传递函数的来源,推导过程说明白了。有了传递函数,我们就能够画出波特图,就能够分析系统到底稳不稳定。

 

但是问题来了,假如我们得到的波特图表明这个系统是不稳定的,那么该如何调整呢?该修改什么器件呢?或者说一个原本稳定的系统,但是我们想修改其中某个元件,会不会造成系统不稳定?总不至于每次修改一个器件,然后画出传递函数看看长什么样子,不行就接着改?这种鸟枪法总归不好。


鸟枪法不行,自然有更好的法子,那就是找到一些特殊点进行分析。这些特殊点,就是零点和极点,零点和极点可以帮助我们调整电路。

 

关于零点和极点,结合我自己的经验,我觉得以下几个问题是值得思考一下的

 

1、传递函数中,让分母为0的频率点叫极点,既然分母为0,那算出来的值不是无穷大吗?增益无穷大?这也能出现?

 

2、老是看到说增加一个电容,就增加了一个极点,增加一个电阻,就增加了一个零点,这到底是怎么回事?其中的道理又是为什么?

 

3、拿到具体的电路,那个零极点如何能直接看出来呢?

 

这一节就来看看上面这几个问题吧。

 

零点和极点的定义

 

先来复习一下概念,什么是零点和极点,一般教材上面给出的定义大致是这样的:

 

极点


上面这个很好理解,清晰明了,但是一个大坑也就随之而来了。如果从数学公式的角度看,这定义没啥好说的,该咋样咋样。

 

但是一放到电路里面去,就尴尬了,H(s)的物理意义不是输出除以输入吗?


那极点的意思不就是使输出为无穷大的点,既然输出无穷大了,那么系统肯定是不稳定的,那么我们常说的极点又到底是什么?

 

比如下面是从网上找的别人写的零点和极点的物理意义,难道自己写的时候不懵吗?

 

那怎么理解我上面这个问题呢?

 

结合实际的情况,系统的传递函数算出来的根多是负数,而现实世界中是没有负频率的,貌似都是直接把负号去掉之后称为极点。

 

比如下面的低通滤波器的传递函数的极点:

 

假如R=1Khz,C=1uF,那么极点是s=-1000,但是我们通常说极点是1000,理由貌似是自然界中没有负频率,所以对s求了个模,频率w=|s|=1000,我们把这个求模后的值也还是叫极点,并没有重新取名字。

 

这个取了模之后的极点再代入原式子H(s)中,就不能够使H(s)等于无穷大了,当然了,也不能是无穷大,因为无穷大意味着系统不稳定。我们研究的电路系统一般是稳定的,所以基本上极点都是负的,或者说在复平面的左半平面。

 

不过,我们所有的系统的极点都是负的吗?都在左半平面吗?

 

我想也不是的,这让我想到了皮尔斯晶体振荡器,它输入为0,但是能够输出一个固定的频率的信号,即晶振的输出嘛,我猜它应该是有极点在右半平面的。因为晶振不就是要自己振荡起来吗?当然,我的猜测也可能是错误的,感兴趣的兄弟可以研究研究。

 

总之吧,对于具体的电路,我们常说的极点,已经不再是严格抠定义得到的极点了,而是取了绝对值之后的,其对应信号的频率都是正的,代入系统就不再能使输出无穷大。


极点就说这么多吧,来看看零点

 

零点

相对于极点一般都是负的,根据系统的不同,零点是有负的,也有正的,像boost,Buck-boost,Flyback都是有右半平面零点,也就是分子N(s)=0有正的根。

 

零点和极点定义的问题就先说这么多吧,总的来说,我们求解的零点和极点的时候,可以假设下频率可正可负的就好。

 

下面来看看,对于一个具体的电路,零点和极点都怎么快速的直接用眼睛“瞪”出来

 

如何快速找到系统的零极点

 

功率级传递函数目前我是找不到快速的方法的,不过放大和补偿级的传递函数,我倒是能想出点道道。

 

下面是常见的三种补偿方式

 

如何快速找到零极点呢?

 

其实思路很简单,我们列出对应的传递函数就行了,上面三种结构,传递函数其实不就是放大器的增益表达式吗?

 

传递函数都是:H(s)=实线椭圆阻抗/虚线网络阻,我们根据定义求出对应的点就行了。不过这个方法有点麻烦,还得计算。

 

简单一点是这么想,零点就是让输出为0的点,极点就是让输出为无穷大的点(这时候考虑负频率,就是求的时候假定负频率是存在的),然后我们去找对应的点就行了。

 

I型补偿

 

要想得到零点,那么我们就找使输出等于0的频率点,显然,要想输出等于0,必须C1的阻抗为0,电容的阻抗是1/sC,那么得频率为无穷大才行,一般我们不考虑无穷大的频率,所以说I型补偿没有零点。

 

要想得到极点,那么我们需要找使输出为无穷大的点,显然,输出无穷大,只需要电容C1的阻抗是无穷大就行,显然,频率为0时,输出阻抗1/sC为无穷大,也就是说0是I型补偿的极点。


所以,对于I型补偿,没有零点,有一个极点

 

II型 补偿

 

同样的,要想得到零点,那么我们就找使输出等于0的频率点,显然,要想输出等于0,必须下面这一坨的阻抗为0。

 

这一坨的结构是R2和C1串联后,再和C2并联。要想上面那一坨整体阻抗为0,要么C2的阻抗为0,要么R2和C1串联后的阻抗为0。

 

因为不考虑无穷大频率,所以C2的阻抗不可能为0。R2和C1串联后的阻抗是可以为0的,即R2+1/sC1=0,解出来就是s=-1/(R2*C1),我们取绝对值换算成频率,即有一个零点w=1/(2π*R2*C1)

 

同样的道理,极点就是下面一坨整体的阻抗为无穷大时的点

 

因为上面结构是并联的关系,首先,可以很容易观察到,当频率为0的时候,两个并联的支路阻抗都是无穷大,那么并联之后自然还是无穷大,即,0是这个补偿器的一个极点。

 

除此之外,R2和C1串联之后,再与C2并联,也会在其它的频率点等于无穷大,有一个简单方法,只需要把R2和C1和C2的阻抗相加等于0,算出来的点就是极点,原理是什么呢?


所以,我们把R2和C1,C2阻抗加起来,如果阻抗等于0,那么整体并联的阻抗就是无穷大的了,即R2+1/sC1+1/sC=0,那么最终极点就是:s=-(1/C1+1/C2)/R2。

取绝对值换算成频率:w=(1/C1+1/C2)/(2π*R2)

 

所以,对于II型补偿,有两个极点,一个零点。

 

III型补偿

 

由前面可知,II型补偿的零极点都是从反馈网络得来的,我们观察III型补偿,它的反馈网络和II型补偿一模一样。因此,III型补偿反馈网络产生的零极点,同II型补偿是一模一样的,也有两个极点和一个零点,就不再赘述了。

 

除了反馈网络,III型补偿在同相输入的电阻上面并联了电阻和电容,那么这个网络是否产生零极点呢?

 

自然是会的,不然III型补偿不就没用了吗?方法其实和前面差不多。

 

先看零点,零点是使输出为0的点,要想输出为0,那么虚线框的总阻抗要为无穷大。并联之后阻抗要想等于无穷大,那么R1,R3,C3三者加起来的阻抗要等于0,原理还是下面这个

 

即:R1+R3+1/sC3=0,即s=-1/((R1+R3)*C3),取绝对值然后换算成频率:w=1/(2π*(R1+R3)*C3)

 

再看极点,极点是使输出为无穷大的点,要想输出为无穷大,那么虚线框的总阻抗为0。易知,当R3和C3串联的阻抗为0,那么虚线框的总阻抗就为0。R3+1/sC3=0,算s=-1/(R3*C3),取绝对值之后换算成频率:w=1/(2π*R3*C3),即该频率点就是一个极点。

 

综上所述,III型补偿有3个极点,2个零点。

 

上面三种补偿汇总如下:

 

以上是我觉得,写出零极点最快的方式了,基本不用动笔,写得有点长,显得有点复杂。不过要是知道里面的道理,应该还是挺方便的。

 

小结

 

本节内容就写到这里了,主要针对常见的几种补偿,看怎么能做到“看着图把零极点看出来”。

 

以上纯属个人想法,不一定对,有问题可以留言交流。


推荐阅读:

1、我写的东西都在这里了

2、手撕Buck!Buck公式推导过程

3、手撕Boost!Boost公式推导及实验验证

硬件工程师炼成之路 硬件工程师的分享、交流、学习的地方。
评论
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 95浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 127浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 79浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 172浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 209浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 111浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 227浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 66浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 145浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 161浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 122浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 74浏览
我要评论
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦