二维材料:从基础到应用丨新材料科学发展战略思考与创新实践

半导体产业纵横 2022-05-29 18:00


二维材料在“后摩尔定律”时代的半导体技术发展有着重要地位。


来源:中国科学院院刊

由于材料尺寸维度的限制,低维材料中电子只能在低维空间中自由运动。石墨烯、二硫化钼、碳纳米管、富勒烯等都是低维材料的典型代表,这些材料以其优异且独特的电学、磁学、光学、力学特性和所蕴含的丰富物理现象,在世界范围内占据了凝聚态物理等基础学科领域中的重要地位。在当前半导体器件不断小型化及柔性化的主流趋势下,二维半导体材料由于其本身结构优势及电学性质特点,在先进半导体的发展中有巨大潜力。国际半导体联盟在“2015国际半导体技术路线图”(ITRS)中明确指出,“在众多的解决方案中,使用二维材料看起来是非常有前途的”。此外,基于二维材料的自旋电子学被列入欧盟“石墨烯旗舰计划”等由政府主导的重大科技工程。以上事实说明了二维材料在“后摩尔定律”时代的半导体技术发展中的重要地位。

 全球二维材料研究热点

自从石墨烯被发现以来,人们对二维材料的研究经历了一个快速发展的过程。虽然从组分上来说,二维材料与其母体块材完全一致,但两者之间的性质迥异。例如:单层石墨烯是零禁带宽度的半导体,而多层石墨却是能带交叠的半金属;单层二硫化钼有直接带隙,因而有很高的发光效率,而多层二硫化钼则具有间接带隙。事实上,从最初的石墨烯到现在,二维材料已经发展成为一个包含大量不同性质、不同组分的材料体系。例如,超导体、金属、半金属、半导体、绝缘体、拓扑绝缘体等都已经在二维材料中被发现。

二维材料在基础凝聚态物理研究方面的突破和进展。从基础科研的角度,大量基于二维材料的基础凝聚态物理研究取得重大突破。一些二维极限下的物理现象(如量子霍尔效应、量子反常霍尔效应等)得以被系统性观测研究,二维极限下声子、电子、自旋、能谷等之间的相互作用也被深刻认知。美国麻省理工学院 Pablo 团队首次从实验上利用双层转角石墨烯在“魔角”附近的超晶格实现对体系电子态的有效调控,实现了从弱关联体系到强关联体系的转变,成功观测到超导、关联绝缘态等现象。这是首次在同一个体系中且组分不变的情况下,实现强、弱关联的转变,对研究超导等强关联现象这一凝聚态物理的基本问题具有重大推动意义。此外,二维磁性材料的发现首次证实了严格二维极限下的长程磁有序态的稳定存在,证实了各向异性和长程相互作用在低维长程序的形成及稳定过程中的作用,进一步明确了 Mermin-Weigner 原理的适用条件。二维磁性材料结合了二维材料在器件小型化、集成化方面的优势,以及磁性材料在自旋探测和操控方面的优势,在高密度、低功耗自旋电子学发展中具有光明的前景。

二维材料在工程技术应用中的重要进展。二维材料在电子学、光电子学、催化、能量存储、太阳能电池、传感器、生物医药等方面的应用价值也得到深入挖掘,并且取得重要进展。例如:在二维材料合成制备方面,南京大学王欣然团队和北京大学刘开辉团队成功实现晶圆级二维材料单晶的生长制备,为二维材料的研究与应用奠定坚实的材料基础。中国科学院物理研究所高鸿钧团队和复旦大学周鹏团队在基于二维材料的浮栅存储器的研究领域取得突破性进展,实现了纳秒级的写入及读取速度,且开关比高达10,从而在性能上形成了对基于传统半导体技术的存储器件的绝对优势。中国科学院物理研究所张广宇团队在基于二维材料的透明、柔性器件大规模制备工艺方面取得突破性进展,实现了柔性衬底上集成度大于 1000 且良品率达到 97%。

目前,欧美各国及电子行业各大巨头公司(如英特尔公司、IBM 公司、台积电公司、三星公司等)都已在二维材料方向投入巨大研究力量,以期抢占研发高地,进行专利布局。中国研究人员在二维材料领域从理论研究、实验研究、工程技术研究等不同角度迅速全面推进,在部分研究方向取得较大进展,少数领域处于世界领先水平;然而,在涉及到高精尖的科学问题等方面,与欧美国家相比仍有较大差距,主要表现为研究主题比较分散,研究内容缺乏深度,研究成果向产业化转换机制不成熟、效率低等方面。松山湖材料实验室针对上述问题,考虑到二维材料在“后摩尔定律”时代的巨大应用潜力,从基础到应用全方位、全链条布局二维材料基础及应用科学研究,于 2018 年建立了一支国际一流、国内领先的二维材料研究团队。该团队得到了科学技术部、广东省科学技术厅、国家自然科学基金委员会、德国马普学会等国内、外研究资助机构资助,累计获得竞争性研究经费约 1500 万元人民币。

 松山湖材料实验室二维材料研究方向与布局

松山湖材料实验室围绕材料方面的需求和瓶颈,布局了“十大”研究方向,二维材料就是其中之一。围绕二维材料研究的关键问题,实验室布局了四大方向,涵盖了从基础科研到应用探索的关键节点,具体是:二维材料的基础物理、高通量计算与理性设计,二维材料规模化制备与极限表征,二维体系中的奇异量子现象研究,基于二维材料的兼容工艺研发与原型器件探索。

方向 1:二维材料的基础物理、高通量计算与理性设计

从理论角度出发,利用第一性原理、紧束缚近似及强关联等理论计算方法开展基础物理研究,探索掺杂和输运性质、电子关联作用导致的超导态、铁电态、铁磁态、非常规量子霍尔效应、广义魏格纳晶体态等强关联现象。针对实验、技术及工程需求,通过高通量计算设计具有要求物性的材料体系。为实验观测到奇异电学输运行为、光学性质、磁学状态等提供理论解析模型。

方向 2:二维材料规模化制备与极限表征

材料的可控、低成本、规模化制备是其工程应用的前提条件。现阶段以二硫化钼为代表的二维半导体材料仍然面临材料制备方面的桎梏。根据材料物性的特点,选取合适的生长方法(如化学气相沉积、化学气相输送、液相剥离等),掌握影响制备规律和结构控制的关键因素,实现对其结晶质量和异质结构的综合控制;从原子尺度阐明二维材料的生长机制,实现高质量、大尺寸高产率的二维材料规模化制备,为后续量子现象研究和新型器件的构建提供材料保障。二维材料研究团队在这方面已经取得可观进展:利用自主设计搭建的化学气相沉积设备,先后突破氧化硅衬底上多晶薄膜生长、蓝宝石衬底上大晶粒外延生长、2 英寸及 4 英寸晶圆级二硫化钼生长等技术。目前,采用立式生长方法在蓝宝石衬底上成功外延制备了 4 英寸高质量连续单层二硫化钼晶圆,所外延的高质量薄膜由高定向(0° 和 60°)的大晶粒(平均晶粒尺寸大于 100 μm)拼接而成。在这种高定向的薄膜中(图 1),高分辨透射电子显微镜观测到了近乎完美的 4|4E 型晶界。得益于独特的多源设计,所制备晶圆的电子学质量在国际上处于领先水平。


在极限表征方面,建设了国际一流开放共享型表征实验室。目前已完成 2 个方面极限表征设备的布局:

1. 将具有不同材料表征特性的技术联用。如:扫描隧道显微镜(STM)-q-Plus 连用、扫描隧道显微镜-超快太赫兹激光联用、角分辨光电子能谱(ARPES)-光发射电子显微镜(PEEM)联用等。通过以上方案,充分发挥各表征手段的优势,使其互相补充、配合,可以实现对材料物性的全面测量,实现材料物性的全息解析。

2. 建立极端条件电学输运实验室。采用稀释制冷技术,实现最低 10 mK 的低温环境;结合超导磁体技术,达到最高 14 T 强磁场。在极端条件下二维材料体系中的电学输运现象和强关联效应下的新奇物态。

方向 3:二维体系中的奇异量子现象研究

以解决凝聚态物理中的基础问题为驱动力,以二维材料、范德华异质结、二维超晶格材料为基础,从二维凝聚态体系及电子、光子、声子、磁子行为及相互作用角度出发,探索和调控二维极限下各种奇异量子现象。具体研究方向有 3 个:

1. 二维转角体系中超导态等强关联绝缘态及拓扑态的物理机制,体系中强弱关联态的转换机制;

2. 二维磁性体系中磁有序态的建立及稳定机制,磁有序态与载流子输运的关联耦合过程;构筑范德华磁性异质结,探索界面耦合作用的发生过程,调控异质结各组分物性;

3. 光子与二维凝聚态材料相互作用中的极化激元产生机制。

目前,二维材料研究团队已经在上述方向取得相应研究进展。例如:率先报道了在“2+2”转角石墨烯体系中的强关联态及位移电场对强关联态的调制作用;完成范德华磁性材料的文献调研及总结工作,对二维磁性发展状况形成整体把控等方面。通过该方向的研究,在解决凝聚态物理中强关联体系的基础物理的过程中,可以发掘新的自由度及调控手段;通过对体系物态的调控实现信息存储、加工传输的基本功能,推动信息技术更新换代。

方向 4:基于二维材料的兼容工艺研发与原型器件探索

二维材料电子工程应用的关键在于实现和传统硅半导体兼容的加工工艺开发。在此前提下,二维材料可以发挥在电子器件、自旋电子器件、柔性器件、光电子器件、能源器件等方面的优势,与硅器件集成实现特殊领域,甚至通用信息处理领域的优势。因此,二维材料的兼容性工艺研发与基于二维材料的原型器件探索是重点研究内容。

1. 兼容性工艺研发主要体现在大面积二维材料转移和加工方面

二维材料转移方面。二维材料研究团队开发了有机高分子薄膜辅助的水浸工艺。该工艺主要利用二维材料与衬底的亲水性差异,通过水分子侵入材料与衬底之间的界面达到剥离材料的目的,然后利用有机高分子薄膜作为支撑将二维材料转移到目标位置。但是,该工艺中二维材料与水和有机高分子薄膜的直接接触将会影响二维材料的电学质量;且该方法可控性较差,会随机性造成二维材料薄膜的褶皱、破裂等损坏。二维材料研究团队集中力量布局可靠、低成本、兼容性的二维材料转移技术。目前已取得可观进展,可以稳定实现 4 英寸二维材料薄膜无损转移。

微加工工艺方面。二维材料研究团队突破了传统微加工工艺采用激光、电子束或离子束曝光刻蚀的思路。针对二维材料的特点,开发了以精细位移台带动极细钨针对二维材料进行无胶直写图形化加工的工艺(图 2)。该工艺操作简单、无污染、加工速度快,已经在实验室中得以成熟化应用。目前,二维材料研究团队正在布局研发分辨率更高的直接加工工艺。


2. 在基于二维材料的原型器件探索方面

二维材料研究团队布局了超短沟道器件、柔性电子器件、光电探测器件、自旋电子学器件、能源器件等研究方向。

超短沟道器件方面。针对器件结构中的沟道、电极、及栅介质等核心材料,设计了基于全二维材料构筑的新型超短沟道晶体管器件,沟道间隙尺寸在 3 nm 以上可控,且器件性能不受短沟道效应影响 。实现关态电流小于 0.3 pA· μm−1,开关比大于 107,迁移率可达 30 cm2·V−1·s−1,亚阈值摆幅~93 mV · dec−1,漏致势垒降低<0.425 V · V−1,电流密度大于 500 μA · μm−1

柔性电子器件方面。基于实验室生长所得的二硫化钼薄膜,实现了大面积二硫化钼柔性晶体管和逻辑器件(如反相器、或非门、与非门、与门、静态随机存储器、五环振荡器等)的制作,器件表现出优异的功能特性。其中,柔性场效应晶体管器件密度可达 1518 个 · cm−2,成品率高达 97%。此外,单个器件还表现出优异的电学性能和柔韧性,开关比达到 1010,平均迁移率达到 55cm2 · V−1 · s−1,平均电流密度为 35 μA · μm−1

自旋电子器件方面。主要集中于基于二维拓扑材料体系开发新型的自旋轨道力矩型磁随机存储器(SOT-MRAM)。基于二维拓扑材料体系,如拓扑绝缘体((BiSb)2Te3、Bi2Se3、SnTe)和外尔半金属(WTe2),通过拓扑保护的能带结构,提供高效的电荷-自旋转换,从而提供强的自旋轨道力矩(SOT),进而降低 SOT-MRAM 的写入电流密度和器件功耗。

能源器件方面。主要集中精力研究量子点太阳能电池。金属硫族化合物(CdSe、PbSe)、钙钛矿(FAPbX3)等无机半导体材料的尺寸小至其激子玻尔半径时(5—10nm)表现出多激子激发现象(已观察到 1 个光子可激发超过 3 对电子空穴对)。基于这类材料的量子点太阳能电池理论上可以突破肖特基效率极限,获得远高于传统硅基太阳能电池的光电转化效率。

光电器件方面。考虑到二维材料具有强的光-物质相互作用和丰富的光-电转换机制,布局开发一批新型的光电功能器件,重点关注光探测器。通过光电流空间成像、脉冲光响应、高频光电流眼图测试等测试表征手段,研究基于二维层状材料及其异质结构的光探测器中光电转换机制,如光电导效应、光伏效应、光热效应、激子增强效应等,以提高器件的光增益,拓宽光探测范围。

 结语


二维材料的研究已经在世界范围内成为材料领域的主流研究方向之一。从基础物理角度,二维材料是实验观测低维凝聚态中奇异物态的理想体系。对奇异物态的解析是推动凝聚态物理取得基础性突破的关键动力。对二维转角体系中强、弱关联态的转换过程及机制的研究正促进人们对(高温)超导等强关联体系的理解。在工程应用方面,与现有硅半导体工艺兼容的二维材料微加工工艺是实现其电子学应用的前提条件;充分利用二维材料在结构、性能等方面优势,开发新型器件,实现与传统半导体器件的比较优势是二维材料工程化应用的决定性因素。

二维材料可以带动新一代高密度低功耗存储、高效光伏、高灵敏度光电探测、超短沟道器件及自旋电子学器件等领域发展。松山湖材料实验室借助发展粤港澳大湾区的国家战略机遇,吸引了国内外一批优秀专家,组建的二维材料团队针对二维材料基础研究与工程应用中的关键问题、主要瓶颈集中力量进行攻关布局。相关研究成果在国际上产生重大影响,这对提前布局我国前沿半导体技术,避免欧美国家的专利封锁,实现半导体产业弯道超车起到重要作用。

针对目前我国二维材料相关领域研究目标不明确,研究方向存在交叉重叠,研究资源较为分散的现实情况,建议应以松山湖材料实验室这样的新型研发机构为落脚点,设立一系列二维材料主题大科学项目。以大科学项目为牵引,团结国内研究资源,使不同团队之间形成合力,完成共同目标,推进二维材料产业化进程。

作者介绍


张广宇  
松山湖材料实验室副主任、研究员,中国科学院物理研究所纳米实验室主任。长期从事二维原子晶体材料包括石墨烯、二硫化钼的科学研究,具体方向为二维原子晶体的可控制备与加工、物性调控、功能电子器件与量子输运等。获得国家自然科学基金杰出青年基金等重要项目的资助。曾荣获北京市科技奖一等奖、中国科学院杰出科技成就奖、中国科学院青年科学家奖、中国物理学会胡刚复物理奖、科学技术部创新人才推进计划创新领军人才等。发表论文 150 余篇,他引 12500 余次。

文章源自:
张广宇, 龙根, 林生晃, 等. 二维材料:从基础到应用. 中国科学院院刊, 2022, 37(3):  368-374.
DOI: 10.16418/j.issn.1000-3045.20211208010

*声明:本文系原作者创作。文章内容系其个人观点,我方转载仅为分享与讨论,不代表我方赞成或认同,如有异议,请联系后台。







半导体产业纵横 (微信号: ICViews)半导体产业纵横是神州数码数智创新+平台下的自媒体账号,立足产业视角,提供及时、专业、深度的前沿洞见、技术速递、趋势解析,赋能中国半导体产业,我们一直在路上。
评论
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 66浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 94浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 104浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 79浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 99浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 114浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 170浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 134浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 146浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦