【Go实现】实践GoF的23种设计模式:抽象工厂模式

原创 元闰子的邀请 2022-05-29 16:05

上一篇:【Go实现】实践GoF的23种设计模式:工厂方法模式

简单的分布式应用系统(示例代码工程):https://github.com/ruanrunxue/Practice-Design-Pattern--Go-Implementation

简述

上一篇我们介绍了工厂方法模式,本文,我们继续介绍它的兄弟,抽象工厂模式(Abstract Factory Pattern)。

在工厂方法模式中,我们通过一个工厂方法接口来创建产品,而创建哪类产品,由具体的工厂对象来决定。抽象工厂模式和工厂方法模式的功能很类似,只是把“产品”,变成了“产品族”。产品族就意味着这是一系列有关联的、一起使用的对象。我们当然也可以为产品族中的每个产品定义一个工厂方法接口,但这显得有些冗余,因为一起使用通常也意味着同时创建,所以把它们放到同一个抽象工厂来创建会更合适。

UML 结构

场景上下文

在简单的分布式应用系统(示例代码工程)中,我们有一个 Monitor 监控系统模块,该模块可以看成是一个简单的 ETL 系统,负责对监控数据的采集、处理、输出。整个模块被设计为插件化风格的架构,Pipeline是数据处理的流水线,其中包含了 InputFilter 和 Output 三类插件,Input 负责从各类数据源中获取监控数据,Filter 负责数据处理,Output 负责将处理后的数据输出。更详细的设计思想我们在桥接模式一篇再做介绍,本文主要聚焦如何使用抽象工厂模式来解决各类插件的配置加载问题。

作为 ETL 系统,Monitor 模块应该具备灵活的扩展能力来应对不同的监控数据类型,因此,我们希望能够通过配置文件来定义 Pipeline 的行为。比如,下面就是一个 yaml 格式的配置内容:

name: pipeline_0 # pipeline名称
type: simple # pipeline类型
input: # input插件定义
  name: input_0 # input插件名称
  type: memory_mq # input插件类型,这里使用的是MemoryMQ作为输入
  context: # input插件的配置上下文
    topic: access_log.topic # 这里配置的是订阅的MemoryMQ主题
filters: # filter插件链定义,多个filter插件组成一个filters插件链
  - name: filter_0 # filter插件名称
    type: extract_log # filter插件类型
  - name: filter_1
    type: add_timestamp
output: # output插件定义
  name: output_0 # output插件名称
  type: memory_db # output插件类型,这里使用的是MemoryDB作为输出
  context: # output插件上下文
    tableName: monitor_record_0 # 这里配置的是MemoryDB表名

另外,我们也希望 Monitor 模块支持多种类型的配置文件格式,比如,json 配置内容应该也支持:

{
  "name""pipeline_0",
  "type""simple",
  "input": {
    "name""input_0",
    "type""memory_mq",
    "context": {
      "topic""access_log.topic"
    }
  },
  "filters": [
    {
      "name""filter_0",
      "type""extract_log"
    },
    {
      "name""filter_1",
      "type""add_timestamp"
    }
  ],
  "output": {
    "name""output_0",
    "type""memory_db",
    "context": {
      "tableName""monitor_record_0"
    }
  }
}

所以,整体的效果是这样的:

可以看出,配置管理子模块中对象之间的关系,很符合抽象工厂模式的 UML 的结构,其中产品族就是 4 个插件配置对象,conf.Inputconf.Filterconf.Outputconf.Pipeline,因此,我们下面使用抽象工厂模式来实现该子模块。

代码实现

首先,我们先把各个配置对象(产品)定义好:

// demo/monitor/config/config.go
package config

// 配置基础结构
type item struct {
   Name       string         `json:"name" yaml:"name"`
   PluginType string         `json:"type" yaml:"type"`
   Ctx        plugin.Context `json:"context" yaml:"context"`
   loadConf   func(conf string, item interface{}) error // 封装不同配置文件的加载逻辑,实现多态的关键
}

// Input配置对象
type Input item

func (i *Input) Load(conf string) error {
   return i.loadConf(conf, i)
}

// Filter配置对象
type Filter item

func (f *Filter) Load(conf string) error {
   return f.loadConf(conf, f)
}

// Output配置对象
type Output item

func (o *Output) Load(conf string) error {
   return o.loadConf(conf, o)
}

// Pipeline配置对象
type Pipeline struct {
   item    `yaml:",inline"` // yaml嵌套时需要加上,inline
   Input   Input            `json:"input" yaml:"input"`
   Filters []Filter         `json:"filters" yaml:"filters,flow"`
   Output  Output           `json:"output" yaml:"output"`
}

func (p *Pipeline) Load(conf string) error {
   return p.loadConf(conf, p)
}

在 Java/C++ 等面向对象的编程语言中,我们定义一个产品的不同实现的时,通常采用继承的方式,也即先定义一个基类封装好公共逻辑,再定义不同的继承自该基类的不同子类来实现具体的逻辑。比如,对于 Input 配置对象,在 Java 中可能是这样定义的:

// 基类
public abstract class InputConfig implements Config {
    protected String name;
    protected InputType type;
    protected Context ctx;

    // 子类实现具体加载逻辑
    @Override
    public abstract void load(String conf);
    ...
}
// Json子类
public class JsonInputConfig extends InputConfig {
    @Override
    public void load(String conf) {
        ... // Json配置文件加载逻辑
    }
}
// yaml子类
public class YamlInputConfig extends InputConfig {
    @Override
    public void load(String conf) {
        ... // Yaml配置文件加载逻辑
    }
}

但是在 Go 语言中并没有继承的概念,也无法定义抽象基类,因此,我们通过定义一个函数对象 loadConf 来实现多态,它的类型是 func(conf string, item interface{}) error,具体做的事情就是解析 conf 字符串(配置文件内容),然后完成 item 的赋值。

Go 语言中通过函数对象来实现多态的技巧,我们在介绍方法模式时也会用到。

接下来,我们定义抽象工厂接口:

// demo/monitor/config/config_factory.go

// 关键点1: 定义抽象工厂接口,里面定义了产品族中各个产品的工厂方法
type Factory interface {
   CreateInputConfig() Input
   CreateFilterConfig() Filter
   CreateOutputConfig() Output
   CreatePipelineConfig() Pipeline
}

然后是不同的实现:

// demo/monitor/config/json_config_factory.go

// loadJson 加载json配置
func loadJson(conf string, item interface{}) error {
   return json.Unmarshal([]byte(conf), item)
}

// 关键点2: 实现抽象工厂接口
type JsonFactory struct {}

func NewJsonFactory() *JsonFactory {
   return &JsonFactory{}
}

// CreateInputConfig 例子 {"name":"input1", "type":"memory_mq", "context":{"topic":"monitor",...}}
func (j JsonFactory) CreateInputConfig() Input {
   return Input{loadConf: loadJson}
}

// CreateFilterConfig 例子 [{"name":"filter1", "type":"to_json"},{"name":"filter2", "type":"add_timestamp"},...]
func (j JsonFactory) CreateFilterConfig() Filter {
   return Filter{loadConf: loadJson}
}

// CreateOutputConfig 例子 {"name":"output1", "type":"memory_db", "context":{"tableName":"test",...}}
func (j JsonFactory) CreateOutputConfig() Output {
   return Output{loadConf: loadJson}
}

// CreatePipelineConfig 例子 {"name":"pipline1", "type":"simple", "input":{...}, "filter":{...}, "output":{...}}
func (j JsonFactory) CreatePipelineConfig() Pipeline {
   pipeline := Pipeline{}
   pipeline.loadConf = loadJson
   return pipeline
}


// demo/monitor/config/yaml_config_factory.go
// loadYaml 加载yaml配置
func loadYaml(conf string, item interface{}) error {
    return yaml.Unmarshal([]byte(conf), item)
}

// YamlFactory Yaml配置工厂
type YamlFactory struct {
}

func NewYamlFactory() *YamlFactory {
   return &YamlFactory{}
}

func (y YamlFactory) CreateInputConfig() Input {
   return Input{loadConf: loadYaml}
}

func (y YamlFactory) CreateFilterConfig() Filter {
   return Filter{loadConf: loadYaml}
}

func (y YamlFactory) CreateOutputConfig() Output {
   return Output{loadConf: loadYaml}
}

func (y YamlFactory) CreatePipelineConfig() Pipeline {
   pipeline := Pipeline{}
   pipeline.loadConf = loadYaml
   return pipeline
}

使用方法如下;

// demo/monitor/monitor_system.go
type System struct {
   plugins       map[string]plugin.Plugin
    // 关键点3: 在使用时依赖抽象工厂接口
   configFactory config.Factory
}

func NewSystem(configFactory config.Factory) *System {
   return &System{
    plugins:       make(map[string]plugin.Plugin),
    configFactory: configFactory,
   }
}

func (s *System) LoadConf(conf string) error {
   pipelineConf := s.configFactory.CreatePipelineConfig()
   if err := pipelineConf.Load(conf); err != nil {
    return err
   }
   ...
}


// demo/example.go
func main() {
    // 关键点4: 在初始化是依赖注入具体的工厂实现
   monitorSys := monitor.NewSystem(config.NewYamlFactory())
   conf, _ := ioutil.ReadFile("monitor_pipeline.yaml")
   monitorSys.LoadConf(string(conf))
    ...
}

总结实现抽象工厂模式的几个关键点:

  1. 定义抽象工厂接口,里面包含创建各个产品的工厂方法定义。
  2. 定义抽象工厂接口的实现类。
  3. 在客户端程序中依赖抽象工厂接口,通过接口来完成产品的创建。
  4. 在客户端程序初始化时,将抽象工厂接口的具体实现依赖注入进去。

典型应用场景

  1. 系统中有产品族,产品有不同的实现,且需要支持扩展。
  2. 希望产品的创建逻辑和业务逻辑分离。

优缺点

优点

  1. 产品创建逻辑和业务逻辑分离,符合单一职责原理。
  2. 具有较高的可扩展性,新增一种产品族实现,只需新增一个抽象工厂实现即可。

缺点

  1. 新增一些对象/接口的定义,滥用会导致代码更加复杂。

与其他模式的关联

很多同学容易将工厂方法模式和抽象工厂模式混淆,工厂方法模式主要应用在单个产品的实例化场景;抽象工厂模式则应用在“产品族”的实例化场景,可以看成是工厂方法模式的一种演进。

另外,抽象工厂接口的实现类,有时也会通过单例模式来实现。

参考

[1] 【Go实现】实践GoF的23种设计模式:SOLID原则, 元闰子

[2] 【Go实现】实践GoF的23种设计模式:工厂方法模式, 元闰子

[3] Design Patterns, Chapter 3. Creational Patterns, GoF

更多文章请关注微信公众号:元闰子的邀请


评论
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 84浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 121浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 89浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 171浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 89浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 71浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 75浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 49浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 169浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 102浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 100浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦