如何解决工业缺陷检测小样本问题

原创 阿丘科技 2022-05-27 16:29
文章来源:吴雨培 北京阿丘科技算法总监 如需转载请注明来源。

吴雨培学长将在5月31日下午2:30
与大家继续探讨小样本问题
欢迎扫描文末二维码预约直播围观~

在工业生产制造中,由于生产过程是一个多因素耦合的复杂过程,生产过程中的任何异常都会导致产品缺陷产生,及时识别异常产品的缺陷模式是提高生产质量和生产效率的有效途径,所以缺陷检测具有十分重要的研究意义。

早期的产品缺陷模式识别主要是通过机器学习方法进行的,如支持向量机、反向传播网络等。这些方法与用肉眼直接对产品缺陷进行识别相比,大大降低了工作量。但是这些早期方法存在以下不足:识别准确率低且需要大量的标签数据对模型进行训练。近年来随着深度学习的发展,大量基于卷积神经网络的算法在视觉任务中大放异彩。由于卷积神经网络具有非常强大的特征提取能力,卷积神经网络在缺陷检测任务中得到了广泛的应用。

与传统的机器学习方法相比,基于卷积神经网络的深度学习方法在缺陷识别领域具有更高的识别准确率和工作效率。但是这种方法和机器学习方法具有同样的缺点,首先是模型训练需要大量的标签数据,而具有缺陷模式标签的图像是不容易获取的,因为获取带有产品缺陷模式标签的图像需要人工监督,即需要大量有经验的专业人员进行人工标注,这是非常昂贵且耗时的。此外在某些高度自动化的生产场景中,产品的良率特别高,收集缺陷样本非常耗时,而当前的用于缺陷检测的深度学习方法大多是基于大量缺陷样本建立模型,缺陷样本的缺乏导致模型难以上线。针对某些行业比如汽车行业的多型号小批量生产场景(每种型号产品只生产几天),在完成缺陷样本收集前某种型号产品已经不再生产了,这种场景下大量的缺陷样本收集是不可能的。此外,由于缺陷是由生产过程中的非受控因素产生的,缺陷的形态是多种多样的,各种形态的样本很难收集完整,这也限制了深度学习在工业检测领域的应用。

为了拓展深度学习在工业检测领域的应用范围及提升易用性,小样本检测算法的研究成为必然。

解决工业检测小样本问题有两种路径,第一种是工程路径,第二种是算法路径。其中工程路径常见有两种方法,第一种是基于真实产品手动制造缺陷,第二种是基于真实图像手动仿真缺陷。这两种方法的优势在于操作简单,产生的缺陷也与真实缺陷比较接近,但劣势也比较明显。基于真实产品手动制造缺陷会对产品造成不可逆的破坏,对于高价值产品破坏成本较高,而且,因为缺陷均由非受控因素产生,手动制造的缺陷不一定与实际缺陷情况完成吻合,会存在一些差异。而基于图像手动仿真缺陷则存在对操作人员要求高,产生速度慢的问题。因此,使用工程路径解决小样本问题可以在一些比较紧急的情况下使用,比如项目初期需要紧急上线时。

从算法路径解决小样本问题,基本的思路有两种,第一种是增加样本,第二种是减少算法对样本的依赖。基于第一种思路的算法研究方向有数据增广和缺陷生成,其中数据增广在深度网络训练时为了防止过拟合已成为一个标准手段,站在工业检测的视角上看,数据增广是一种性价比比较高的扩增样本的手段,但因为目前数据增广的方法大多是基于一些传统图像处理方法,所以能仿真缺陷的位置和一些简单纹理变化,但无法仿真缺陷的形状和复杂纹理,所以数据增广一般作为一个基础手段,可以解决一部分小样本问题,对于一些简单场景是有帮助的。而要解决更复杂场景的样本生成问题,需要用缺陷生成算法。我们将缺陷生成算法的研究分为三个阶段,第一阶段是单一产品单一型号缺陷生成,第二阶段是单一产品多型号缺陷生成,第三阶段是实现跨产品缺陷的生成。当前缺陷生成算法大致可以分为两种,一种是自动生成算法,整个生成过程完全不需要人工干预,第二种是半自动生成算法,需要一些简单的人工交互。自动生成算法的典型算法有DCGAN[1] 、WGAN[2] ,输入一张缺陷图像可以直接生成多张真实的缺陷图像。半自动生成算法的典型算法有CGAN[3] 、CVAE[4] 、Pix2Pix[5] ,需要人工交互给定缺陷生成的类别或形状,然后根据给定信息生成指定类型缺陷。但当前无论是自动生成算法还是半自动生成算法,对训练样本的需求量虽然比监督算法少,但还是有一定要求,而且目前还没有一种能在所有数据上通用的解决方案,当前仍需要针对不同的场景制定不同算法版本。通用的缺陷生成算法是这个研究方向下一步的重点。

算法路径解决小样本问题的第二个思路是减少算法对样本的依赖,基于这个思路衍生出两条算法路线,第一条路线是完全不需要缺陷样本的非监督学习算法,基于非监督算法训练模型时仅需要OK图像参与训练即可。第二条路线仍基于有监督算法,对缺陷样本的需求量大大降低。

非监督算法实现的思路大体上分为两种,一种是基于生成模型,基本思路是训练一个只能生成OK图像的生成网络,推理时针对输入的NG图像,找到一个与NG图像最接近的OK图像,然后求两张图的差异,根据差异大小判断是否为NG,典型算法有AE,VAE[6] ,Ano-GAN[7] 等。另一种思路是基于特征表示,基本思路是找个一个较好的特征表示,将OK图和NG图分别映射到高维特征空间,OK图对应特征点的类内距离很小,推理时一张图对应特征点与OK图特征簇的中心距离很远就可以判定为NG,典型算法有SVDD[8] 、OCSVM、DeepSVDD[9] 等。

基于有监督算法减少样本依赖的思路分为两种,一种是对输入数据进行归一化,降低不同缺陷样本之间的差异,归一化算法基于传统图像处理算法实现,需要针对不同场景做不同的算法设计,很难有通用性,因此仅作为一些临时处理手段。另一种思路是基于迁移学习,典型的算法研发方向是域适应(Domain Adaption)和域泛化(Domain Generation)。DA处理的问题要求可以获取一部分目标域的图像,且不能实现跨类别的迁移,因此适合用于处理跨产品型号的问题。DG在DA的基础上,放宽了对目标域数据的要求,可以不需要目标域数据,且可以实现跨类别迁移,因此可以实现跨产品、跨型号、跨缺陷类别的迁移。DA算法当前研究的基本思路有三种,一是基于差异度量,核心思路是找一个差异度量函数,让源域与目标域样本的特征在这个度量函数下最小,代表算法为MMD[10] ;二是基于对抗,核心思路是通过构造对抗网络,训练一个分类器让判别器无法区分数据是来自源域还是目标域,这样就实现了源域和目标域的融合,代表算法为Dom Confusion [11] ;三是基于重构,核心思路是将构造源域和目标域的通用特征,仅利用通用特征去执行相应的任务,代表算法为Domain Separation Networks[12] 。DG算法当前的研究思路也分为三种,第一种是推理时选取一个分布最近的源域的模型直接使用,第二种是通过拆解域相关与域无关的组件并进行组合来实现对目标域数据的处理,第三种是训练得到域不变的特征[13] 。

当前基于有监督的缺陷检测算法,在数据量充足的场景下已经逐步成功落地,但工业场景具有一定的离散性,大部分应用场景均为小样本检测场景,小样本问题的解决有助于将AI技术应用于千千万万工厂。虽然当前针对小样本问题有一些初步的解决思路,但该问题的彻底解决需要更深入的研究及更大的投入。阿丘科技将AI For Every Factory作为使命,会坚定不移地持续研究小样本问题,也希望可以和有志于研究工业AI检测问题的工业人一起交流进步,推动小样本问题的彻底解决。

5月31日下午2:30-3:30
直播间在线交流
吴雨培学长在线等你哦

(微信扫一扫预约直播,有直播提醒哦)


文献引用

[1] Radford A ,  Metz L ,  Chintala S . Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[C]// 2015.
[2] Arjovsky M ,  Chintala S ,  Bottou L . Wasserstein GAN[J].  2017.
[3] Mirza M ,  Osindero S . Conditional Generative Adversarial Nets[J]. Computer Science, 2014:2672-2680.
[4] Sohn K, Lee H, Yan X. Learning structured output representation using deep conditional generative models[J]. Advances in neural information processing systems, 2015, 28: 3483-3491.
[5] Isola P, Zhu J Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1125-1134.
[6] Kingma D P, Welling M. Auto-encoding variational bayes[J]. arXiv preprint arXiv:1312.6114, 2013.
[7] Schlegl T, Seeböck P, Waldstein S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]//International conference on information processing in medical imaging. Springer, Cham, 2017: 146-157.
[8] Tax, David MJ, and Robert PW Duin. "Support vector data description." Machine learning 54.1 (2004): 45-66.
[9] Ruff, Lukas, et al. "Deep one-class classification." International conference on machine learning. PMLR, 2018.
[10] Tzeng E ,  Hoffman J ,  Zhang N , et al. Deep Domain Confusion: Maximizing for Domain Invariance[J]. Computer Science, 2014.
[11] Tzeng E ,  Hoffman J ,  Darrell T , et al. Simultaneous Deep Transfer Across Domains and Tasks[J]. 2015 IEEE International Conference on Computer Vision (ICCV), 2017.
[12] Bousmalis K, Trigeorgis G, Silberman N, et al. Domain separation networks[J]. Advances in neural information processing systems, 2016, 29: 343-351.
[13] J  Wang,  Lan C ,  Liu C , et al. Generalizing to Unseen Domains: A Survey on Domain Generalization[J].  2021.
阿丘科技 工业AI视觉平台服务商。关注并私信我,申请免费试用产品
评论
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 51浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 70浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 102浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 83浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 70浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 37浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 106浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 66浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 98浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 41浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 65浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦