100G以上骨干网用高速PCB孔损耗技术研究

电子万花筒 2022-05-26 08:00
电子万花筒平台核心服务

 中国最活跃的射频微波天线雷达微信技术群

电子猎头:帮助电子工程师实现人生价值! 

电子元器件:价格比您现有供应商最少降低10%

射频微波天线新产品新技术发布平台:让更多优秀的国产射频微波产品得到最好的宣传!发布产品欢迎联系管理,专刊发布!强力曝光!



摘要:在发送端,100G信号被分为10路或4路高速信号,加上0TN和FEc开销,每路信号为10G+bit/s或更高的25G+bit/s,体现在印制电路板上则为单对差分阻抗线实现10G+bit/s、25Gbit/s的传输速率。文章主要以减少孔损耗的角度分析了实现了单PCB走线速率100Gbit/s,突破了背钻技术、跳孔技术,有效保证了100G以上骨干网高速印制电路板的技术实现。


1 前言
随着大数据、云计算、光纤宽带的应用和普及,对骨干网传输损率的要求来越高,原有的40G方案在性能和成本上已经无法满足实际的需求,100G传输系统逐步被大家认可和接受,而此系统对PCB传输信号速率的要求也从1G、3G提升到10G、25G。


当信号沿着PCB线路以超过1Gbps的速率传输时,此时的信号通路应视为有损传输线模型,其中电磁能量一般以五种形式损失:辐射损耗、耦合到邻近的线条上、阻抗不匹配、导线损耗和介质损耗。阻抗不匹配、导线损耗和介质损耗是传输线上信号衰减的主要贡献者,为在完整的背板链路中实现10Gbps+甚至于25Gbps+的长距离传输,通道总长度通常从508 mm(20 in)到1016 mm(40 in)不等,PCB板厂必须严格控制阻抗并确保无源通道的信号完整性,以减少趋肤效应损耗、介质损耗、串扰和反射。


这就要求PCB厂更多地关注线路形状、布线方式、通孔结构、焊盘形状、介质材料的选择以及铜箔粗糙度等对信号传输的影响,诸如更先进的布线方式、更多埋盲孔、更低损耗的无卤基材、更低轮廓的铜箔、先进半导体封装方式、标准化的SERDES以及更多均衡、预加重等措施⋯。关于布线方式、产品图形设计、阻抗匹配及PCB相关的各种加工精度,如线宽、介厚、层偏等,部分是客户设计相关的,部分是PCB加工一直研究和管控的,本文主要从孔的损耗上进行研究,也就是从减少孔STuB方面进行研究和阐述。


2 背钻技术

传统多层板各层间一律采PTH做为互连工具。例如某8层板之某通孔仅执行L1与L4的互连时,所多出的孔壁称为Stub。Stub越长寄生电容愈大而插入损耗S21也愈严重。然而由于STUB本身的电感,以及信号孔与接地孔两者之电容,另加上下两孔环间的电容,均将严重影响到信号完整性。STUB若经扩孔背钻掉而消除其共振后,则其插入损耗将可大幅降低,如图1。

图1插损与STUB关系示意图

以一款14层板的为例进行仿真,走线方式为1、3层换层走线,设计不同的背钻深度,得到对应插损表现如图2。

图2插损与STUB关系仿真图

由图示看出仿真得出的不同的背钻深度即STUB长度,会产生不同频率的谐振点,谐振频率越高,代表此系统可传输的信号速率越高;通过表1可知,实现10 GHz的速率传输至少需要STuB长度控制在0.30 mm(12 mil)以内。

表1谐振频率与STUB长度的对应关系表

目前背钻的设计由原来的通孔孔径0.5 mm以上逐步缩小到0.2 mm,随之背钻难度也大幅度提升,主要体现在孔径变小、背钻时排屑困难导致堵孔,随着高速高频材料的越来越广泛化使用,小孔背钻成为不可或缺的加工工艺,所以此问题也需要得到快速有效的解决。


2.1 实验方案
设计实验方案如下
(1)试验板件选择为小孔背钴板件;加工机台选为Schmoll机;
(2)板件加工参数选为BDR参数(背钻专用加工参数);
(3)板件加工时注意断钻、缠丝问题,加工完毕后保留钻头,观察钻头磨损及崩缺情况
(4)采用三种钻头进行验证且对孔位精度进行验证;
(5)板件加工完毕后,做好标识,按照正常流程向后转工:
(6)板件在蚀刻后按照标识的指定位置取切片观察孔壁质量;
(7)板件加工方案如表2。

表2加工方案

2.2实验现象与结果
加工完成后观察钻头磨损、断钻及缠丝情况,并统计背钻堵孔比例、测量背钻孔位精度。

2.3试验分析
(1)钻头结构:①目前我司常备钻头,钻尖角130。,螺旋角为40。,芯厚为0.12,为Uc型号钻头,排屑及刚性较好;②此钻头为uC改良型钻头,为加大排屑性特意减薄芯厚至0.03~0.05左右,排屑性能优秀,相对应刚性较差;③此钻头为uC改良型钻头,为改良排屑性能而减少芯厚至0.08~0.09左右,相应的刚性为之降低;
(2)钻头磨损量及断钻、缠丝:因此类钻头为背钻所用,所需切削的介质为锡、树脂、电镀铜,其中钻头最主要的磨损为切削电镀铜导致;对比以上三种钻头,芯厚越薄的钻头磨损量相对大,但加大了排屑槽空间的钻头缠丝会大幅减少。
(3)孔位精度及对位情况:从数据上分析,三种钻头在孔位精度上均可为满足我司要求,且从对位数据上分析,B型号钻头在对位上相对差一些,但也可满足40 um以内,根据目前我司背钻孔径大于通孔150¨m,单边间距为75 um,可以保证背钻孔无残铜现象。


2.4小结
汇总试验结果如表6。

表6背钻试验结果

通过对以上三种钻头进行对比测试,只有钻头C可以满足小孑L背钻要求,目前已经实现批量稳定生产。


3.2工艺流程
跳孔工艺流程图如图3。

图3跳孔工艺流程图


3.3跳孔缺陷分析
3.4塞孔缺陷分析
跳孔工艺塞孔使用普通丝印方式存在孔内气泡无法排除导致塞孔,采用真空塞孔可有效改善塞孔气泡凹陷问题。两种塞孔效果如图5。

图4跳子L工艺底部残胶、偏盘缺陷图

图5跳孔工艺丝印塞孔、真空塞孔


3.5 小结
图4跳子L工艺底部残胶、偏盘缺陷图
图5跳孔工艺丝印塞孔、真空塞孔
跳孔工艺与与普通两阶盲孔叠孔工艺相比,可以,提高了PCB乃至电子产品的集成化程度,实现跨阶连接并且减少一次压合制作流程,降低PCB制作成本。

4. 总结
本文主要介绍了两种减少孔损耗、即减少STUB的技术,随着的速率越来越快,此类设计的应用也会越来越普遍,背钻工艺将成为普遍设计,跳孔也会逐步在高端产品上应用。

欢迎射频微波雷达通信工程师关注公众号



中国最纯粹的射频微波雷达通信工程师微信技术群,欢迎您的加入,来这里一起交流和讨论技术吧!进群记得备注方向和公司名称哦,我们将邀请您进细分群!

用手指按住就可以加入微信技术群哦!



电子万花筒平台自营:Xilinx ALTERA ADI TI ST NXP 镁光 三星 海力士内存芯片 等百余品牌的电子元器件,可接受BOM清单,缺料,冷门,停产,以及国外对华禁运器件业务!


欢迎大家有需求随时发型号清单,我们将在第一时间给您呈上最好的报价,微信(QQ同号):1051197468 也希望您把我们的微信推荐给采购同事,感谢对平台的支持与信任!


与我们合作,您的器件采购成本将相比原有供应商降低5%以上!!不信?那您就来试试吧!!欢迎来撩!!



电子万花筒 电子万花筒,每个电子工程师都在关注的综合型技术与行业服务平台!
评论 (0)
  • 在当下的商业版图中,胖东来宛如一颗璀璨的明星,散发着独特的光芒。它以卓越的服务、优质的商品以及独特的企业文化,赢得了消费者的广泛赞誉和业界的高度关注。然而,近期胖东来与自媒体博主之间的一场激烈对战,却如同一面镜子,映照出了这家企业在光环背后的真实与挣扎,也引发了我们对于商业本质、企业发展以及舆论生态的深入思考。​冲突爆发:舆论场中的硝烟弥漫​2025年4月,抖音玉石博主“柴怼怼”(粉丝约28万)突然发难,发布多条视频直指河南零售巨头胖东来。他言辞犀利,指控胖东来在玉石销售方面存在暴利行为,声称其
    疯人评 2025-05-14 13:49 80浏览
  •   舰艇电磁兼容分析与整改系统平台解析   北京华盛恒辉舰艇电磁兼容分析与整改系统平台是保障海军装备作战效能的关键技术,旨在确保舰艇电子设备在复杂电磁环境中协同运行。本文从架构、技术、流程、价值及趋势五个维度展开解析。   应用案例   目前,已有多个舰艇电磁兼容分析与整改系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润舰艇电磁兼容分析与整改系统。这些成功案例为舰艇电磁兼容分析与整改系统的推广和应用提供了有力支持。   一、系统架构:模块化智能体系   电磁环境建模:基
    华盛恒辉l58ll334744 2025-05-14 11:22 90浏览
  • 感谢面包板论坛组织的本次测评活动,本次测评的对象是STM32WL Nucleo-64板 (NUCLEO-WL55JC) ,该测试板专为LoRa™应用原型构建,基于STM32WL系列sub-GHz无线微控制器。其性能、功耗及特性组合经过精心挑选,支持通过Arduino® Uno V3连接,并利用ST morpho接头扩展STM32WL Nucleo功能,便于访问多种专用屏蔽。STM32WL Nucleo-64板集成STLINK-V3E调试器与编程器,无需额外探测器。该板配备全面的STM
    无言的朝圣 2025-05-13 09:47 199浏览
  •   军事领域仿真推演系统的战略价值与发展前瞻   北京华盛恒辉仿真推演系统通过技术创新与应用拓展,已成为作战效能提升的核心支撑。以下从战略应用与未来趋势展开解析:   应用案例   目前,已有多个仿真推演系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润仿真推演系统。这些成功案例为仿真推演系统的推广和应用提供了有力支持。   一、核心战略应用   1. 作战理论创新引擎   依托低成本仿真平台,军事人员可高效验证新型作战概念。   2. 装备全周期优化   覆盖武器
    华盛恒辉l58ll334744 2025-05-14 16:41 101浏览
  • 一、蓝牙射频电路设计的核心价值在智能穿戴、智能家居等物联网设备中,射频性能直接决定通信质量与用户体验。WT2605C等蓝牙语音芯片的射频电路设计,需在紧凑的PCB空间内实现低损耗信号传输与强抗干扰能力。射频走线每0.1dB的损耗优化可使通信距离提升3-5米,而阻抗失配可能导致30%以上的能效损失。二、射频走线设计规范1. 阻抗控制黄金法则50Ω标准阻抗实现:采用4层板时,顶层走线宽度0.3mm(FR4材质,介电常数4.3)双面板需通过SI9000软件计算,典型线宽1.2mm(1.6mm板厚)阻抗
    广州唯创电子 2025-05-13 09:00 33浏览
  •   电磁数据展示系统平台解析   北京华盛恒辉电磁数据展示系统平台是实现电磁数据高效展示、分析与管理的综合性软件体系,以下从核心功能、技术特性、应用场景及发展趋势展开解读:   应用案例   目前,已有多个电磁数据展示系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据展示系统。这些成功案例为电磁数据展示系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与预处理   智能分析处理   集成频谱分析、时频变换等信号处理算法,自动提取时域频域特征;
    华盛恒辉l58ll334744 2025-05-13 10:20 386浏览
  • 在全球能源结构转型加速推进与政策驱动的双重作用下,油气输送、智慧水务及化学化工等流体计量场景正面临效率革命与智能化升级的迫切需求。传统机械式流量计虽在工业初期有效支撑了基础计量需求,但其机械磨损、精度衰减与运维困难等固有缺陷已难以适应现代工业对精准化、智能化与可持续发展的多维诉求。在此背景下,超声波流量计则凭借着高精度探测、可实时监测、无侵入式安装、无阻流部件、易于维护与绿色环保等优势实现了突破性发展,成为当代高精度流体计量体系中不可或缺的重要一环。该技术不仅是撬动能源利用效率提升、支撑智慧管网
    华普微HOPERF 2025-05-14 11:49 54浏览
  • 一、量子自旋态光学操控1、‌拓扑量子态探测‌磁光克尔效应通过检测拓扑磁结构(如磁斯格明子)的磁光响应,实现对量子材料中非平庸拓扑自旋序的非侵入式表征。例如,二维量子磁体中的“拓扑克尔效应”可通过偏振光旋转角变化揭示斯格明子阵列的动态演化,为拓扑量子比特的稳定性评估提供关键手段。2、‌量子态调控界面‌非厄米磁光耦合系统(如法布里-珀罗腔)通过耗散调控增强克尔灵敏度,可用于奇异点附近的量子自旋态高精度操控,为超导量子比特与光子系统的耦合提供新思路。二、光子量子计算架构优化1、‌光子内存计算器件‌基于
    锦正茂科技 2025-05-13 09:57 57浏览
  • 在当下竞争激烈的 AI 赛道,企业高层的变动往往牵一发而动全身,零一万物近来就深陷这样的动荡漩涡。近日,零一万物联合创始人、技术副总裁戴宗宏离职创业的消息不胫而走。这位在大模型基础设施领域造诣颇深的专家,此前在华为云、阿里达摩院积累了深厚经验,在零一万物时更是带领团队短期内完成了千卡 GPU 集群等关键设施搭建,其离去无疑是重大损失。而这并非个例,自 2024 年下半年以来,李先刚、黄文灏、潘欣、曹大鹏等一众联创和早期核心成员纷纷出走。
    用户1742991715177 2025-05-13 21:24 146浏览
  •   军事仿真推演系统平台核心解析   北京华盛恒辉军事仿真推演系统平台以计算机仿真技术为基石,在功能、架构、应用及效能上展现显著优势,成为提升军事作战与决策能力的核心工具。   应用案例   目前,已有多个仿真推演系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润仿真推演系统。这些成功案例为仿真推演系统的推广和应用提供了有力支持。   一、全流程功能体系   精准推演控制:覆盖推演启动至结束全流程。   智能想定管理:集成作战信息配置、兵力部署功能。   数据模型整合
    华盛恒辉l58ll334744 2025-05-14 17:11 83浏览
  •   电磁数据管理系统深度解析   北京华盛恒辉电磁数据管理系统作为专业的数据处理平台,旨在提升电磁数据的处理效率、安全性与可靠性。以下从功能架构、核心特性、应用场景及技术实现展开分析:   应用案例   目前,已有多个电磁数据管理系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据管理系统。这些成功案例为电磁数据管理系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与接入:实时接收天线、频谱仪等设备数据,兼容多协议接口,确保数据采集的全面性与实时性
    华盛恒辉l58ll334744 2025-05-13 10:59 300浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦