在过去的25年里,正交频分复用(OFDM)已经成为大多数无线通信系统的首选波形。接下来会发生什么?
OFDM在高移动性环境时,受多径信道和多普勒频移影响,信道估计与均衡将变得非常困难。为了解决传统OFDM波形在高速移动场景下的多普勒频移问题,最近提出的一种称为正交时频空间(OTFS)的新波形,正在成为研究的热点。
OTFS波形是基于移动无线信道可以在延迟-多普勒域中有效建模的思想,在典型的高移动性环境领域进行信息编码,以对抗多径传播信道中的多普勒频移。
01
通信技术演进
上世纪80年代,以语音为主要功能的第一代移动通信技术面世,采用了FDMA技术。到了90年代,数字通信技术的发展为第二代移动通信技术奠定基础,提供语音和短信服务。进入21世纪后,第三代和第四代移动通信相继发展,同时OFDM技术在4G时代得到大规模应用,从而满足人们对移动数据网络和视频传输等需求。
时间进入2018年,第五代移动通信技术正式推出,5G开始进入人们的生活和工作中。更大的带宽和更高的频段,将支撑起万物互联的社会愿景。
面对未来世界,我们追求更加快捷的出行,更方便的生活,以及无处不在的信息交流。无线通信技术该怎么发展,6G时代将会是什么样?
如何在时速500km/h的高铁上或飞机上,享受更流畅的通讯服务,成为了当前学术界和产业界正在考虑的问题。
通信技术的核心,在于波形设计。
01
多普勒无线信道
由于多径传播,接收信号r(t)是传输信号s(t)的延迟、多普勒位移和衰减的聚合。延迟是每个传播路径长度的函数,而多普勒频移是由于发射机、接收机和反射器场景中的相对运动而发生的。
我们首先考虑一个简单的无线信道,如下图所示,其中发射机(基站)、接收机(移动)和反射器(建筑物)是静态的。由于场景中没有相对运动,发射信号不经历任何多普勒频移。然而,由于直接路径和反射路径的传播延迟不同,导致两份s(t)在不同的时间到达移动接收机。从基站到移动设备的直接路径由于距离r1而引起传播延迟。另一方面,从建筑反射过来的路径必须经过r2 +r3的组合距离。
现在考虑下图中的情况,其中移动接收机在一辆汽车中,以相对速度υ向基站移动。这样的场景下,就会产生多普勒频移。
典型的时延扩展和多普勒扩展,如下图所示。从图中可以看出,若在高速移动场景中使用毫米波频段,无疑将产生巨大的多普勒频移,相应地,需要使用更大的子载波频率,如120kHz或240kHz。
03
OFDM
OFDM技术作为经典并实用的多载波技术,从4G时代一直演进到今天,我们正在享受该技术变革带来的福利。
在子载波保持严格正交的情况下,OFDM接收机可以实现正确解码。
但是,如果因时延和多普勒频移太大,破坏了原有子载波的正交性,产生了严重的符号间干扰(ISI)和载波间干扰(ICI),OFDM接收机可能无法正确解码,导致通信失败。
那么,该怎么办?OFDM还能继续发展多载波技术的优势吗?
答案是:有。
既然是因为时延和多普勒频移影响了OFDM接收机的信道估计和均衡,那么,我们可以在时延和多普勒频移的方向上做文章。
于是,正如《Orthogonal Time Frequency Space Modulation》提到的OTFS调制技术,正是为了解决该问题而被提出。
04
OFDM与OTFS
在线性时变(LTV)信道中,时-频域(TF)、时域、多普勒域、延迟-多普勒域,信道响应相互关系如下图所示。
TF域与DD域之间的相互转换,我们用辛-傅里叶变换对(SFFT、ISFFT)完成。
对于熟悉的TF资源格与DD域的资源格之间,我们可以这么做:
于是,我们可以看到,OFTS可以完美的应用到OFDM系统中。
参考:
1.Yi Hongy, Emanuele Viterboy,A.Chockalingam.Orthogonal Time Frequency Space (OTFS) Modulation--Tutorial at ICC2019, Shanghai, May 24th, 2019
---END---
往期精选
FPGA技术江湖广发江湖帖
无广告纯净模式,给技术交流一片净土,从初学小白到行业精英业界大佬等,从军工领域到民用企业等,从通信、图像处理到人工智能等各个方向应有尽有,QQ微信双选,FPGA技术江湖打造最纯净最专业的技术交流学习平台。
FPGA技术江湖微信交流群
加群主微信,备注职业+方向+名字进群
FPGA技术江湖QQ交流群
备注地区+职业+方向+名字进群