揭开“达芬奇”手术机器人的神秘面纱

传感器技术 2022-05-24 07:00


在一个小玻璃瓶内,一粒葡萄在接受机器人做手术。手术整个流程是由一台叫“达芬奇”的手术机器人完成的,它先是用自己的机械手撕开了一颗葡萄的表皮,后来又成功缝合了葡萄的“表皮”。葡萄的长度不到2.5厘米且非常脆弱,葡萄皮的厚度不到1毫米,在“达芬奇”缝完最后一针之后,葡萄基本上保持完美状态。



达芬奇外科手术系统是一种高级机器人平台,其设计的理念是通过使用微创的方法,实施复杂的外科手术。达芬奇系统是世界上仅有的、可以正式在腹腔手术中使用的机器人手术系统,也是目前最复杂和最昂贵的外科手术系统之一。


不过其实达芬奇机器人并不是我们一贯认为的具备人形以及人工智能深度学习等功能,严格来说达芬奇机器人是一种高级机器人平台,由外科医生控制台、床旁机械臂系统、成像系统三部分组成。


从医学的角度来说,达芬奇机器人就是高级的腹腔镜系统。它在进行手术操作时也需要机械臂穿过胸部、腹壁等等,其设计的理念是通过使用微创的方法,实施复杂的外科手术。



达芬奇手术机器人的来历



达芬奇机器人的技术源于拥有官方背景的斯坦福研究院(SRI),上世纪80年代末,一群科学家在斯坦福研究院开始了外科手术机器人的研发,初衷是要研制出适合战地手术的机器人。在后续的研究中,手术机器人引起了美国国防部的关注,他们对这种医生可以远程操作来对士兵进行手术的系统很感兴趣,很快这种兴趣变成了实际行动。1990年的时候项目组收到了美国国家卫生研究院的投资,希望他们能够尽快的研究出可供实际使用的原型。


在1994的时候Frederic Moll博士对这套系统非常感兴趣,他多次请求将“Lenny”(早期达芬奇机器人)商业化,以最大化它的价值。于是Frederic Moll和SRI经过多次协商后成功购买了关于Lenny机器人的知识产权。之后在1995年成立了Intuitive Surgical Devices Inc(直觉外科公司)。


美国直觉外科公司1996年推出第一代达芬奇机器人,2006年推出的第二代机器人机械手臂活动范围更大了,允许医生在不离开控制台的情况下进行多图观察。2009年推出了第三代机器人,相比第二代机器人,增加了双控制台、模拟控制器、术中荧光显影技术等功能。第四代机器人在2014年推出,灵活度、精准度、成像清晰度等方面有了质的提高,2014年下半年还开发了远程观察和指导系统。目前,达芬奇机器人已经发展到第五代。




达芬奇手术机器人是目前全球最成功及应用最广泛的手术机器人,广泛适用于普外科、泌尿科、心血管外科、胸外科、妇科、五官科、小儿外科等。达芬奇手术机器人在前列腺切除手术上应用最多,现在也已越来越多地应用于心脏瓣膜修复和妇科手术中。


达芬奇手术机器的组成及功能



达芬奇手术机器人主要由3个部分组成:外科医生控制台、床旁机械臂系统、成像系统。


医生主控台


主控台按人体工程学原理设计,一般位于手术室无菌区之外,主刀医生坐着使用双手(通过操作两个主控制器)及脚(通过脚踏板)来控制器械和一个三维高清内窥镜。系统将医生的眼睛和手部自然延伸到患者身上,将医生的手、手腕和手指运动准确地翻译成手术器械的微细而精确的运动。手术器械尖端与外科医生的双手同步运动。



医生通过主控台的目镜看到的3D显示效果非常逼真,立体感和层次感非常好,能够获得准确的空间距离。支撑手臂的挡板上有个小LED显示屏,显示患者、术者、术式等基本信息。前方的就是操作杆了,手指套在上面进行操作,能同时控制两条臂,进行移动、切割、止血、缝合、打结等各种操作,灵敏程度不逊人手。接下来是下面的脚踏板,左边黑色的控制腹腔镜机械臂的移动。右边和普通电刀的脚踏板一样,黄色切割,蓝色止血。


从计算机专业角度看,达芬奇的主控制台就是把医生根据系统反馈的人体内部病灶状况及解剖图像所确立的手术方案及步骤解析为系统的系列动作。


移动平台


又叫病人侧推车,这是病人端机器人系统。侧推车具有4个固定于可移动基座的机械臂,底座通过线缆和高可靠性航空插头与控制台相连。中心机械臂是持镜臂,负责握持摄像机系统。其余机械臂是持械臂,负责握持特制外科手术器械。臂系统整车依靠具有自锁能力的脚轮支撑,可以实现手工移动;设有助力装置,在没有外部动力源的情况下,仍可提供5min左右的动力支持。每个机械臂具有一系列多位置关节和可旋转的末端关节与套管相连,这样在安装时易于摆位,并保证可达手术要求的运动空间。手工进行机械臂摆位时需要借助一个控制开关以放松全部关节,放开此开关则机械臂将重新锁定在当前位置。每一个机械臂上有一个单独的键作为末端可旋转关节的离合器,允进行快速更换。微器械的关节由连接到其端部四个轮子的线路系统控制,后端采用四个小轮将来自电机的运动传递给钢丝,进而带动各关节运动。位置刷新率接近1500Hz,因此可有效去除机械震颤。微器械尖端通过独特的机械设计实现6种自由度,可以通过活动器械本身提供第7种自由度(如切割或抓持)。器械具有可重复消毒的特性。



机器人手臂绕固定枢轴点移动,手术系统的安全检查可以防止仪器或机器人手臂的任何独立运动。外科医生控制Endowrist仪器,仪器设计有七种运动,比人类手腕的运动范围更大。每种仪器工具均作特定任务设计,如夹紧、切割、凝固、解剖、缝合及其对人体组织进行的相关操作。机械臂是系统的核心部件,看起来很像腹腔镜器械,通用有针持、抓钳、剪刀等不同的臂,位置可互换。与腹腔镜器械不同的是,每条臂都有很多小关节,手腕器械弯曲度和旋转度远远超出人的手,可以完成各种复杂到人手有时都无法完成的动作。



机器人手臂的特点:

1、手拥有7个自由度,具有人手无法企及的精确性。


2、可以过滤人手的抖动,使得手术可以更精细。


3、具有移动缩减功能的特点,也就是说医生在操纵这一装置的过程中,移动操作杆5毫米,在患者体内的机械末端仅移动1毫米,这样就大大提高了手术的精确性和安全性。


机器人的手术器械(instrument)



使用时插在病人端机器人上。机械臂是一种高值耗材,使用时临时安装到机器人上。这个器械上面安装了记忆芯片,每插在机器人上一次,芯片就会计数+1, 10次以后,10次后机器人就不能使用这个器械了。这种设计的一个目的是公司要赚耗材费,二是避免器械里面结构故障,造成手术危险。


手术器械末端具有3+1个自由度,加上3个位置自由度完全保证了在器械末端腹腔内部的6个运动自由度(空间中有6 个自由度);另外通过直觉控制避免了普通腹腔镜手术操作的反向操作,极大的提高了医生操作的能力和速度。


成像系统


成像系统(VideoCart)主要由三维内窥镜、摄像机及处理器、观察系统组成,分别位于持镜臂、成像系统和控制台上。内装有手术机器人的核心处理器以及图象处理设备。手术机器人的内窥镜为高分辨率三维(3D)镜头,对手术视野具有10倍以上的放大倍数,能为主刀医生带来患者体腔内三维立体高清影像,使主刀医生能够真实的感知和清晰地观察到手术部位的解剖结构,把握好操作距离,精准避开手术区域的血管和神经,将外科医生的手部运动转化为患者体内微小器械的较小、精确的运动,最大限度地保留患者器官和组织的生理功能。



放置于成像系统中的两台三晶片摄像机可以产生两个具有高清晰度和色彩还原性的高质量图像,并分别输出到控制台中的两台手术操作监视器。通过三维图像观察器,两路略带视差的图像分别被发送至术者的左右眼,从而形成高质量的三维图像。内窥镜照明采用高质量冷光源,使光线亮度达到最优,术者可以通过调整摄像机深度和角度来获得需要的观察区域和放大倍数。此外,成像系统上面还设置了外置观察监视器、二氧化碳充气机、光源及摄像机。外置监视器的信号来自两台摄像机中的一台,代表了左眼或者右眼的视觉。成像系统还包括两个图像同步器和一个聚焦控制器,以实现可控的高质量三维图像。


达芬奇手术机器人的工作流程




达芬奇外科手术系统要求在病人身体开多达五个小型(小于1厘米)的切口,用于插入两个手术机械手臂和一个摄像头。放置在病人床边的配套推车将手术器械移动到病人身边,病人床边会有外科手术助手在。与此同时,医生可以坐到房间的控制台来操作系统,外科医生通过对主控装置将外科医生的动作翻译并传递给机械手臂,机械臂根据指令进行手术,成像系统将手术场景进行反馈。如此外科医生用手抓住显示屏下方的主控装置,手腕相对其眼睛自然地动作,而外科医生的对主控装置的动作被转换成在患者体内进行的精确的、实时的机器手臂动。由此通过外科医生的手腕、手和手指的运动来控制主刀的机器手臂,这和典型的开放式手术是一样的。


达芬奇手术机器人的关键核心技术



达芬奇手术机器人代表着当今手术机器人最高水平,它有三个关键核心技术:可自由运动的手臂腕部EndoWrist、3D高清影像技术、主控台的人机交互设计。


1、机械手臂的腕部采用能够提供7个自由度的EndoWrist技术,可以完成人手无法实现的动作,触及范围更广。系统具有振动消除系统和动作定标系统,可保证机械臂在狭小的手术视野内进行精确的操作。此外,机械臂还能完成一些人手无法完成的极为精细的动作,手术切口也可以开得很小,从而缩短患者在手术后恢复的时间。同时还可以提高手术效率,节约费用。


达芬奇手术系统集成了高端运动控制技术,这样机器手臂的每个动作都能像熟练的外科医生一样顺畅、准确---即便在很慢的计算速度下。每个达芬奇HD系统包含有30多个由马克森精密电机公司生产的电机。这些电机是每个机械手臂的心脏。


马克森电动机为达芬奇系统提供输入和输出,是其主要驱动。通过一系列反馈控制,电机和编码器接收了来自医生的输入信号,在经过主控制台电路进行实时翻译后,将输出信号传送给机器手臂中的电机。机械手随之通过主控制台电路将力反向施加至外科医生的手中。


马克森电机的定子采用的是稀土磁铁,其定子采用的是无铁设计,这样即便在低速运行的情况下也不会有磁性齿槽存在。


为区分它们的双重角色,将外科医生的床旁推车所用的电机作为主控电机,机械手臂电机所用电机作为从属电机。从属电机的精度和主控电机的精度相同,并且还需要能在外科医生助手移动末端执行器就位时后向驱动。手术器械顶部的电机具有低迟滞性。


达芬奇系统中使用了30多个电机。马克森电动机是达芬奇系统核心性能特性试验的关键,这些核心性能特性测试包括摩擦、间隙和兼容情况,以及一系列传感器反馈监测。


2、三维影像平台内装有外科手术机器人的核心处理器以及图像处理设备,可由巡回护士操作。达芬奇手术系统的内窥镜可以形成三维立体图像,手术视野图像被放大10~15倍,提供真实的16:9比例的全景三维图像。


3、主控台的设计充分考虑人机交互,提供了自然的手-眼位置,舒服的坐姿降低了手术医生的疲劳感,保证长时间手术的正常进行,内置的麦克风能够让手术中的沟通更加有效率。主刀医生坐在控制台中,位于手术无菌区之外,使用双手控制两个主控制器,使用脚控制脚踏板。控制系统中的运动比例缩放功能将使医生手部的自然颤抖或无意的移动减小到最小程度。


以上关键技术中又以下列技术模块最为核心


1、机器人控制技术:机器人是手术机器人系统的核心,它的作用有两个:一是按命令轨迹运动将安装在其末端的手术器械送达病灶点;二是按指令轨迹带动手术器械运动完成操作任务。控制计算机在接收命令后根据规划系统提供的轨迹参数生成机器人运动指令,该指令经通信系统发送给机器人的控制器,机器人在该指令控制下完成指定的操作。机器人的灵巧操作空间必须覆盖手术的操作空间,以保证规划手术方案的实施。在手术的路径选取时,有时要求避开一些人体的重要组织,要求机器人具有冗余特性,即机器人具有一定的避障能力。


2、配准与空间映射技术:空间映射是一系列坐标系间的变换关系,可以用齐次变换矩阵表示。当在图像空间获得目标靶点和手术路径信息后,通过空间映射关系可以在机器人操作空间中获得它们的描述。在主从异构操作系统中,还存在一个由主机操作空间到从机操作空间的映射变换,该映射关系由遥操作系统的结构和控制策略决定。


3、手术器械的位姿跟踪:手术器械的位姿跟踪是采用某种方法实时获得手术器械在某一已知空间中的位姿。该位姿信息和已知的手术器械尺寸信息,可用于导引或手术监视系统。位姿信号从机器人控制器获得,在监视系统的三位患者模型上实时显示出手术器械的位姿,提供手术时地可视化监视功能。现代手术机器人一般采用光电式方法获得位姿信息。


达芬奇手术机器人的优势和不足



优势


1.在腔镜手术基础上更加发挥腔镜的优势,去除使用腔镜的劣势;


2.加入计算机的技术可提高手术的操控性、精确性和稳定性;


3.向术者提供了高清晰度三维图像并将手术野放大了10—20倍;


4.创新的腕部可自由活动的镜下手术器械可使镜下手术器械完全重现人手动作从而达到手眼协调;


5.系统设计可排除主刀医生可能的手的颤抖对手术所造成的不利影响;


6.与开放手术的视觉一致使操作者手眼协调从而加快了医生学习进程;


7.为患者带来更理想的手术结果,减少围手术期后遗症以及并发症的发生;


8.创伤小、恢复快而使可接受手术的患者年龄范围扩大并使某些危重病人接受手术成为可能;


不足


1、自身仍存在着一定的缺陷

触觉反馈体系的缺失;手术机器人的器械臂固定以后,其操作范围受限;整套设备的体积过于庞大,安装、调试比较复杂;系统的技术复杂,在使用过程中可能发生各种机械故障,如半路死机等;系统的学习曲线较长,医生与系统的配合需要长时间的磨合;手术前的准备及手术中更换器械等操作耗时较长等。


2、使用成本昂贵

①购置费用高,目前国内第三代四臂达芬奇手术机器人的总体购置费用在2000万以上。


②二是手术成本高,机器人手术中专用的操作器械每用10次就需强制性更换,而更换一个操作器械需花费约2000美元。


③三是维修费用高,手术机器人需定期进行预防性维修,每年维修保养费用也是一笔不小的开支。造成机器人手术使用成本高的原因通常被认为是其生产商通过收购竞争对手和专利保护等手段在这一领域形成了垄断所致,而这也成为制约手术机器人进一步发展的一个重要原因。


本公众号高薪签约长期专栏作者,欢迎具备优秀写作能力的科技从业或爱好者,联系传感器小编YG18511751369(微信号)

期待下一篇10W+出自您的笔下!

 

免责声明:本文版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。 

  

 

为您发布产品,请点击“阅读原文”

 
传感器技术 制造业的未来是智能化,智能化的基础就是传感器; 互联网的方向是物联网,物联网的基石也是传感器; 关注传感器技术,获得技术资讯、产品应用、市场机会,掌握最黑科技,为中国工业导航。
评论
  • 光耦合器,也称为光隔离器,是用于电气隔离和信号传输的多功能组件。其应用之一是测量电路中的电压。本文介绍了如何利用光耦合器进行电压测量,阐明了其操作和实际用途。使用光耦合器进行电压测量的工作原理使用光耦合器进行电压测量依赖于其在通过光传输信号的同时隔离输入和输出电路的能力。该过程包括:连接到电压源光耦合器连接在电压源上。输入电压施加到光耦合器的LED,LED发出的光与施加的电压成比例。光电二极管响应LED发出的光由输出侧的光电二极管或光电晶体管检测。随着LED亮度的变化,光电二极管的电阻相应减小,
    腾恩科技-彭工 2024-12-20 16:31 25浏览
  • //```c #include "..\..\comm\AI8051U.h"  // 包含头文件,定义了硬件寄存器和常量 #include "stdio.h"              // 标准输入输出库 #include "intrins.h"         &n
    丙丁先生 2024-12-20 10:18 79浏览
  • 汽车驾驶员监控系统又称DMS,是一种集中在车辆中的技术,用于实时跟踪和评估驾驶员状态及驾驶行为。随着汽车产业智能化转型,整合AI技术的DMS逐渐成为主流,AI模型通过大量数据进行持续训练,使得驾驶监控更加高效和精准。 驾驶员监测系统主要通过传感器、摄像头收集驾驶员的面部图像,定位头部姿势、人脸特征及行为特征,并通过各种异常驾驶行为检测模型运算来识别驾驶员的当前状态。如果出现任何异常驾驶行为(如疲劳,分心,抽烟,接打电话,无安全带等),将发出声音及视觉警报。此外,驾驶员的行为数据会被记录
    启扬ARM嵌入式 2024-12-20 09:14 87浏览
  • ALINX 正式发布 AMD Virtex UltraScale+ 系列 FPGA PCIe 3.0 综合开发平台 AXVU13P!这款搭载 AMD 16nm 工艺 XCVU13P 芯片的高性能开发验证平台,凭借卓越的计算能力和灵活的扩展性,专为应对复杂应用场景和高带宽需求而设计,助力技术开发者加速产品创新与部署。随着 5G、人工智能和高性能计算等领域的迅猛发展,各行业对计算能力、灵活性和高速数据传输的需求持续攀升。FPGA 凭借其高度可编程性和实时并行处理能力,已成为解决行业痛点的关
    ALINX 2024-12-20 17:44 18浏览
  •         在上文中,我们介绍了IEEE 802.3cz[1]协议提出背景,旨在定义一套光纤以太网在车载领域的应用标准,并介绍了XMII以及PCS子层的相关机制,在本篇中,将围绕IEEE 802.3cz-MultiGBASE-AU物理层的两个可选功能进行介绍。EEE功能        节能以太网(Energy-Efficient Ethernet)是用于在网络空闲时降低设备功耗的功能,在802.3cz的定义中,链
    经纬恒润 2024-12-19 18:47 79浏览
  • 在强调可移植性(portable)的年代,人称「二合一笔电」的平板笔电便成为许多消费者趋之若鹜的3C产品。说到平板笔电,不论是其双向连接设计,面板与键盘底座可分离的独特功能,再加上兼具笔电模式、平板模式、翻转模式及帐篷模式等多种使用方式,让使用者在不同的使用情境下都能随意调整,轻巧灵活的便利性也为多数消费者提供了绝佳的使用体验。然而也正是这样的独特设计,潜藏着传统笔电供货商在产品设计上容易忽视的潜在风险。平板笔电Surface Pro 7+ 的各种使用模式。图片出处:Microsoft Comm
    百佳泰测试实验室 2024-12-19 17:40 164浏览
  • 随着工业自动化和智能化的发展,电机控制系统正向更高精度、更快响应和更高稳定性的方向发展。高速光耦作为一种电气隔离与信号传输的核心器件,在现代电机控制中扮演着至关重要的角色。本文将详细介绍高速光耦在电机控制中的应用优势及其在实际工控系统中的重要性。高速光耦的基本原理及优势高速光耦是一种光电耦合器件,通过光信号传递电信号,实现输入输出端的电气隔离。这种隔离可以有效保护电路免受高压、电流浪涌等干扰。相比传统的光耦,高速光耦具备更快的响应速度,通常可以达到几百纳秒到几微秒级别的传输延迟。电气隔离:高速光
    晶台光耦 2024-12-20 10:18 127浏览
  • 百佳泰特为您整理2024年12月各大Logo的最新规格信息。——————————USB▶ 百佳泰获授权进行 USB Active Cable 认证。▶ 所有符合 USB PD 3.2 标准的产品都有资格获得USB-IF 认证——————————Bluetooth®▶ Remote UPF Testing针对所有低功耗音频(LE Audio)和网格(Mesh)规范的远程互操作性测试已开放,蓝牙会员可使用该测试,这是随时测试产品的又一绝佳途径。——————————PCI Express▶ 2025年
    百佳泰测试实验室 2024-12-20 10:33 99浏览
  • 汽车行业的变革正愈演愈烈,由交通工具到“第三生活空间”。业内逐渐凝聚共识:汽车的下半场在于智能化。而智能化的核心在于集成先进的传感器,以实现高等级的智能驾驶乃至自动驾驶,以及更个性、舒适、交互体验更优的智能座舱。毕马威中国《聚焦电动化下半场 智能座舱白皮书》数据指出,2026年中国智能座舱市场规模将达到2127亿元,5年复合增长率超过17%。2022年到2026年,智能座舱渗透率将从59%上升至82%。近日,在SENSOR CHINA与琻捷电子联合举办的“汽车传感系列交流会-智能传感专场”上,艾
    艾迈斯欧司朗 2024-12-20 19:45 21浏览
  • By Toradex秦海1). 简介为了保证基于 IEEE 802.3 协议设计的以太网设备接口可以互相兼容互联互通,需要进行 Ethernet Compliance 一致性测试,相关的技术原理说明请参考如下文章,本文就不赘述,主要展示基于 NXP i.MX8M Mini ARM 处理器平台进行 1000M/100M/10M 以太网端口进行一致性测试的测试流程。https://www.toradex.com
    hai.qin_651820742 2024-12-19 15:20 140浏览
  •         不卖关子先说感受,真本书真是相见恨晚啊。字面意思,见到太晚了,我刚毕业或者刚做电子行业就应该接触到这本书的。我自己跌跌撞撞那么多年走了多少弯路,掉过多少坑,都是血泪史啊,要是提前能看到这本书很多弯路很多坑都是可以避免的,可惜这本书是今年出的,羡慕现在的年轻人能有这么丰富完善的资料可以学习,想当年我纯靠百度和论坛搜索、求助啊,连个正经师傅都没有,从软件安装到一步一布操作纯靠自己瞎摸索,然后就是搜索各种教程视频,说出来都是泪啊。  &
    DrouSherry 2024-12-19 20:00 91浏览
  • 耳机虽看似一个简单的设备,但不仅只是听音乐功能,它已经成为日常生活和专业领域中不可或缺的一部分。从个人娱乐到专业录音,再到公共和私人通讯,耳机的使用无处不在。使用高质量的耳机不仅可以提供优良的声音体验,还能在长时间使用中保护使用者听力健康。耳机产品的质量,除了验证产品是否符合法规标准,也能透过全面性的测试和认证过程,确保耳机在各方面:从音质到耐用性,再到用户舒适度,都能达到或超越行业标准。这不仅保护了消费者的投资,也提升了该公司在整个行业的产品质量和信誉!客户面临到的各种困难一家耳机制造商想要透
    百佳泰测试实验室 2024-12-20 10:37 140浏览
  • Supernode与艾迈斯欧司朗携手,通过Belago红外LED实现精准扫地机器人避障;得益于Belago出色的红外补光功能,使扫地机器人能够大大提升其识别物体的能力,实现精准避障;Belago点阵照明器采用迷你封装,兼容标准无铅回流工艺,适用于各种3D传感平台,包括移动设备、物联网设备和机器人。全球领先的光学解决方案供应商艾迈斯欧司朗(瑞士证券交易所股票代码:AMS)近日宣布,与国内领先的多行业三维视觉方案提供商超节点创新科技(Supernode)双方联合推出采用艾迈斯欧司朗先进Belago红
    艾迈斯欧司朗 2024-12-20 18:55 23浏览
  • 光耦固态继电器(SSR)作为现代电子控制系统中不可或缺的关键组件,正逐步取代传统机械继电器。通过利用光耦合技术,SSR不仅能够提供更高的可靠性,还能适应更加复杂和严苛的应用环境。在本文中,我们将深入探讨光耦固态继电器的工作原理、优势、挑战以及未来发展趋势。光耦固态继电器:如何工作并打破传统继电器的局限?光耦固态继电器通过光电隔离技术,实现输入信号与负载之间的电气隔离。其工作原理包括三个关键步骤:光激活:LED接收输入电流并发出与其成比例的光信号。光传输:光电传感器(如光电二极管或光电晶体管)接收
    腾恩科技-彭工 2024-12-20 16:30 15浏览
  • 国产数字隔离器已成为现代电子产品中的关键部件,以增强的性能和可靠性取代了传统的光耦合器。这些隔离器广泛应用于医疗设备、汽车电子、工业自动化和其他需要强大信号隔离的领域。准确测试这些设备是确保其质量和性能的基本步骤。如何测试数字隔离器测试数字隔离器需要精度和正确的工具集来评估其在各种条件下的功能和性能。以下设备对于这项任务至关重要:示波器:用于可视化信号波形并测量时序特性,如传播延迟、上升时间和下降时间。允许验证输入输出信号的完整性。频谱分析仪:测量电磁干扰(EMI)和其他频域特性。有助于识别信号
    克里雅半导体科技 2024-12-20 16:35 18浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦