程序员必备高级技术之函数调用栈

一口Linux 2022-05-19 00:00

大家都知道函数调用是通过栈来实现的,而且知道在栈中存放着该函数的局部变量。但是对于栈的实现细节可能不一定清楚。本文将介绍一下在Linux平台下函数栈是如何实现的。有些同学可能觉得没必要了解这么深入,其实非也。根据本号多年的经验,了解系统深层次的原理对分析疑难问题有很好的帮助

图0 函数栈

就像熟悉抓包是解决网络通信问题的高级武器一样,熟悉函数调用栈则是分析程序内存问题的高级武器。本文以Linux 64位操作系统下C语言开发为例,介绍应用程序调用栈的实现原理,并通过一个实例和GDB工具具体分析一下某个程序的调用栈内容。在介绍具体的调用栈之前,我们先介绍一些基础知识,这些知识是理解后续函数调用栈的基础。

X86 CPU的寄存器

CPU的寄存器是需要了解的基础知识,这是因为在X64体系中函数的参数是通过寄存器传递的。如图1是X86 CPU寄存器的列表及功能简要说明。

图1 Intel X86 CPU寄存器用途

我们知道Intel的CPU在设计的时候都是向前兼容的,也就是在新一代的CPU上可以运行老一代CPU上的编译的程序。为了保证兼容性,新一代CPU保留了老一代寄存器的别名。以16位寄存器AX为例,AL表示低8位,AH表示高8位。而32位CPU问世之后,通过名为EAX的寄存器表示32位寄存器,AX仍然保留。以此类推,RAX表示一个64位寄存器。

图2 不同的寄存器名称

应用程序的地址空间

操作系统通过虚拟内存的方式为所有应用程序提供了统一的内存映射地址。如图3所示,从上到下分别是用户栈、共享库内存、运行时堆和代码段。当然这个是一个大概的分段,实际分段比这个可能稍微复杂一些,但整个格局没有大变化。

图3 应用程序的地址空间

从图中可以看出用户栈是从上往下生长的。也就是用户栈会先占用高地址的空间,然后占用低地址空间。目前我们可以大体上有个了解即可,后面我们在详细分析用户栈的细节。

函数调用及汇编指令

为了理解函数调用栈的细节,有必要了解一下汇编程序中函数调用的实现。函数的调用主要分为2部分,一个是调用,另外一个是返回。在汇编语言中函数调用是通过call指令完成的,返回则是通过ret指令。

汇编语言的call指令相当于执行了2步操作,分别是,1)将当前的IP或CS和IP压入栈中;2)跳转,类似与jmp指令。同样,ret指令也分2步,分别是,1)将栈中的地址弹出到IP寄存器;2)跳转执行后续指令。这个基本上就是函数调用的原理。

除了在代码间的跳动外,函数的调用往往还需要传递一个参数,而处理完成后还可能有返回值。这些数据的传递都是通过寄存器进行的。在函数调用之前通过上文介绍的寄存器存储参数,函数返回之前通过RAX寄存器(32位系统为EAX)存储返回结果。

另外一个比较重要的知识点是函数调用过程中与堆栈相关的寄存器RSP和RBP,两个寄存器主要实现对栈位置的记录,具体作用如下:

RSP:栈指针寄存器(reextended stack pointer),其内存放着一个指针,该指针永远指向系统栈最上面一个栈帧的栈顶。

RBP:基址指针寄存器(reextended base pointer),其内存放着一个指针,该指针永远指向系统栈最上面一个栈帧的底部。

寄存器的名称跟体系结构是相关的,本文是64位系统,因此寄存器是RSP和RBP。如果是32位系统则寄存器的名称为ESP和EBP。

应用程序调用栈

我们先从整体上来看一下函数调用栈的主要内容,如图4所示。在函数栈中主要包括函数参数表、局部变量表、栈的基址和函数返回地址这里栈的基址是上一个栈帧的基址,因为在本函数中需要使用该基址访问栈中的内容,因此需要首先将上一个栈帧中的基址压栈。

图4 函数调用栈概览

为了便于理解,我们以一个具体的程序作为示例。本程序非常简单,主要是模拟了多个函数的函数调用关系和参数传递。另外,在函数func_2中定义了2个形参,以模拟多参数传递的过程。

图5 函数栈汇编分析

在本示例中,main函数调用func_1函数。我们从main函数开始分析,可以先看一下右侧的C语言代码。首先是函数参数的准备过程。在main函数调用func_1时依次传入的参数为1、2、3和4+g,其中最后一个参数是需要计算的。按照红色方框的虚线,我们可以看到对应的汇编程序,在汇编程序中首先处理最后一个参数,然后是倒数第二个,以此类推(函数参数的处理顺序在日常开发中是需要注意的内容重点)。同时,我们看到存储参数的寄存器名称与前文是一致。

当准备完参数之后,就是调用func_1函数,这个在汇编语言中就是call func_1这一行。虽然只是一行汇编指令,但其实内部做了一些事情,这个我们在前文介绍call指令的时候有所介绍,大家可以参考一下前文。

之后就进入func_1函数的处理逻辑。最一开始是pushq %rbp汇编程序,这句指令的作用是将RBP压入函数栈中。这句压栈及后面的更新RBP的值(moveq %rsp, %rbp)是构建本函数的栈帧头,后续对本栈帧的内容的访问都是通过帧头(RBP)进行的。接下来是对参数压栈的过程和局部变量初始化的过程,具体分布参考图5中的绿色方框和红色方框。

完成函数内的运算后,最后将运算结果放入寄存器EAX中,然后调用指令leave和ret。这里面需要说明的是leave指令,该指令相当于下面两条汇编指令。可以对比一下函数入口的汇编指令,其实两者是对称的。leave指令将本帧的栈基址赋值给栈指针(图6中步骤2),然后将其中的内容弹出到RBP中(图6中步骤3)。其实就是RBP指向上一个帧(调用者)的栈帧,也即是一个复原的过程。

movl %ebp %esp
popl %ebp


图6 函数返回示意图

这样,函数返回后寄存器RBP和RSP从被调用者的栈帧切换到了调用者的栈帧。

通过GDB分析函数调用栈

上面是通过反汇编的方式分析函数的调用栈和栈帧情况。我们还可以通过gdb动态的分析函数栈和栈帧的使用情况。我们依然通过main函数调用func_1函数为例来分析。我们这里在函数func_1的入口处设置一个单点,然后运行程序,程序停止在断点处。如图7是我们逐步执行是函数栈的变化过程,具体细节我们这里就不再赘述,大家可以实际操作一下。

图7 函数栈变化过程

本文的目的是让大家对函数调用栈有个整体的了解,这样对以后程序的疑难杂症就有更多的解决思路。因为在实际生产环境中与栈相关的问题也是比较多的,比如局部变量太多导致的栈溢出,或者踩内存问题引起的栈破坏等等。因此,了解了函数栈的原理,在遇到所谓的莫名其妙问题的时候就会有新的思路。往往很多问题不是问题本身莫名其妙,而是我们的知识储备不够,自己感觉莫名其妙而已。

end



一口Linux 


关注,回复【1024】海量Linux资料赠送

精彩文章合集

文章推荐

【专辑】ARM
【专辑】粉丝问答
【专辑】所有原创
专辑linux入门
专辑计算机网络
专辑Linux驱动
【干货】嵌入式驱动工程师学习路线
【干货】Linux嵌入式所有知识点-思维导图


点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看

一口Linux 写点代码,写点人生!
评论
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 53浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 60浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 111浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 53浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 59浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 69浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 58浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 82浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 107浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 155浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 43浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 84浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 118浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 93浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 60浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦