晶振(XO)输出波形(Output Type)是与封装尺寸一样重要的一个技术指标,这些输出波形可简单归为两种:正弦波、方波。
在示波器上观察振荡器波形,虽然很多时候看到的还是不太好的正弦波,那是由于示波器的带宽不够。例如:有源晶振20MHz,如果用40MHz或60MHz的示波器测量,显示的是正弦波,这是由于方波的傅里叶分解为基频和奇次谐波的叠加,带宽不够的话,就只剩下基频20MHz和60MHz的谐波,所以显示正弦波。要完美再现方波需要至少10倍的带宽,5倍的带宽只能算是勉强,需要至少100M的示波器。
图1. 晶振厂商规格书截图
相较而言,方波输出功率大,驱动能力强,但谐波分量多,正弦波输出功率不如方波,但其谐波分量小很多。同时,两种波形还有各种不同的表现形式,分别适合不同的应用。
1.方波输出模式
数字通信系统中,一般采用方波输出模式的晶体振荡器,以匹配系统中驱动的负载。这些方波的通用输出类型有TTL和CMOS,还有LVPECL和LVDS,主要指标有输出电平、占空比、上升/下降时间、驱动能力等。
(1)TTL输出
TTL是晶体管-晶体管逻辑(Transistor-Transistor Logic)电路,传输延迟时间快、功耗高,属于电流控制器件。
(2)CMOS输出
CMOS输出是最常见一种,属于属于电压控制形式,用来驱动逻辑电平输入。
图2. 晶振的CMOS输出波形
CMOS输出的传输延迟时间慢、功耗低,相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。对应3.3V
LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。HCMOS采用全静态设计、高速互补金属氧化物半导体工艺,CMOS采用互补金属氧化物半导体。
(3)LVPECL输出
LVPECL是低压正发射极耦合逻辑(Low-Voltage
Positive Emitter-Couple
Logic)。ECL电路速度快,驱动能力强,噪声小,很容易达到几百MHz的应用,但是功耗大,需要负电源。为简化电源,出现了PECL(ECL结构,改用正电压供电)和LVPECL的输出模式。
图3. 晶振的LVPECL输出波形
LVPECL由ECL和PECL发展而来,其典型输出为一对差分信号,射极通过一个交流源接地。ECL、PECL、LVPECL使用时应注意:不同电平不能直接驱动,中间可用交流耦合、电阻网络或专用芯片进行转换。
这三种结构必须有电阻拉到一个直流偏置电压。例如,用于时钟的LVPECL直流匹配时用130欧上拉,同时用82欧下拉;交流匹配时用82欧上拉,同时用130欧下拉,但两种方式工作后直流电平都在1.95V左右。
(4)LVDS输出
LVDS是低电压差分信号(Low-Voltage Differential Signaling),为差分对输入输出,内部有一个3.5-4mA恒流源,在差分线上改变方向和电平来表示“1”和“0”。
通过外部的100欧匹配电阻(并接在差分线上靠近接收端)转换为±350mV的差分电平。LVDS使用注意:可以达到600MHz以上,PCB要求较高,差分线要求严格等长,差最好不超过10mil(0.25mm);100欧电阻离接收端距离不能超过500mil,最好控制在300mil以内。
图4. 晶振的LVDS输出波形
LVDS的应用模式可以有三种形式:
(1)单向点对点和双向点对点,能通过一对双绞线实现双向的半双工通信。
(2)多分支形式,即一个驱动器连接多个接收器(当有相同的数据要传给多个负载时,可以采用这种应用形式)。
(3)多点结构,此时多点总线支持多个驱动器,也可以采用BLVDS驱动器,它可以提供双向的半双工通信,但是在任一时刻,只能有一个驱动器工作,因而发送的优先权和总线的仲裁协议都需要依据不同的应用场合,选用不同的软件协议和硬件方案。
2. 正弦波输出模式
正弦波(Sine Wave)主要用于对EMI、频率干扰有特殊要求的电路,例如驱动RF组件、混频器或其它具有50Ω输入阻抗的器件。这时,振荡器产生的输出功率通常在0dBm到+13dBm(1mW到20mW)之间,尽管如果需要可以输出更高功率。
还有一种特殊的削顶正弦波(Clipped Sine Wave),相比方波的谐波分量少很多,但驱动能力较弱,在负载10K//10PF时Vp-p为0.8Vmin。SMD 7050、SMD5032、SMD3225等封装的表贴温补晶振通常使用这种形式的输出波形。
正弦波输出模式通常有谐波、噪声和输出功率等指标要求。这种电路要求输出的高次谐波成分很小,后面有模拟电路选用正弦波也是比较好的选择。
在厂商提供的晶振规格书里,除了输出模式或输出格式这个指标外,通常还附带相应的波形样式、输出负载和测试电路,有的晶振还兼容TTL、CMOS两者格式,应用灵活多样。
作者:硬之城Allchips, 来源:面包板社区
链接:https://mbb.eet-china.com/blog/uid-me-3975615.html
版权声明:本文为博主原创,未经本人允许,禁止转载!
免费申请开发板
关注面包板社区,每日精选电子技术知识
▼
这几种485通讯自动收发电路,你都掌握吗?
最最最通俗易懂的电磁波基础
带你解锁AC/DC、DC/DC转换器基础
如何让你的PCB变成圆弧角?
50HZ 直消大法
PID原理和参数调试
电容器家族的“王中王”