5G射频PA的Load-line与Load-pull

云脑智库 2022-05-16 00:00


来源 | 慧智微电子

智库 | 云脑智库(CloudBrain-TT)

云圈 | “云脑智库微信群”,请加微信:15881101905,备注您的研究方向

声明 | 本号聚焦相关知识分享,内容观点不代表本号立场,可追溯内容均注明来源,若存在版权等问题,请联系(15881101905,微信同号)删除,谢谢


说到射频PA(Power Amplifier,功率放大器)的设计和应用,有两个名词经常被大家提及:Load-line与Load-pull。在使用中,这两个名词太过常用了,以至于对这两个名词后面的理论依据反而讨论不多。接下来我们就对Load-line和Load-pull背后的知识做一个讨论。


Load-line:负载线,PA的生命线


Load-line中文名称为负载线,是PA设计中最为重要的设计参考。
 
对于PA来说,最重要的目的是进行功率有效的放大与输出,一切的设计理念均是为此服务。此时,以最大功率“传输”为首要目标的共轭传输无法完成最大功率“输出”的目的:PA需要实现的是将射频功率最大程度的从直流功率中榨取出来,而不是将已经产生的信号传输出去。实现射频功率最大化输出用到的就是“最佳负载匹配”,而不是用来最大化传输已有功率的“共轭匹配”
 
为了直观分析PA在不同负载下的功率输出,在PA设计中就引入了“负载线(Load-line)”的概念,用以观测PA在不同负载下的射频电压与电流摆幅,从而得出不同负载下的功率输出,找到最佳负载。
 

1.晶体管的DC-IV曲线

 

PA工作是基于晶体管的特性工作的,所以在讨论PA的Load-line之前,首先对晶体管特性做一个分析。

 

PA可以采用HBT、MOSFET、pHEMT等多种半导体工艺进行设计,不同工艺设计在PA的Load-line理论中分析方法基本相同。以下将以射频PA中最为常用的HBT(Hetero-Junction Bipolar Transistor, 异质结双极型晶体管)器件为例进行分析。

 

HBT是一种特殊的BJT(Bipolar Junction Transistor,双极型晶体管),由两个背靠背连接的PN结构成。下图为HBT器件与其所设计的放大器的基本结构。

                           

图:HBT器件及共发射极放大器基本结构

 

对于HBT器件来说,由于Base的小电压(或电流)可以对Collector的大电流进行控制,所以一个小的Base输出信号,就可以经由HBT器件在Collector产生大的输出信号,这就是HBT作为放大器的基本原理。

 

理想情况下,HBT器件在工作中有以下几个特点:

  1. VCE要足够的大,才能建立起CE之间的电流

  2.  VCE足够大之后,ICE不受VCE控制,只受Base电流IB控制

  3. ICE与IB呈β倍关系


简单起见,为了理解这种控制关系,可以把HBT器件理解为一个水龙头,Collector是水龙头的输入,Emitter是水龙头的输出,而Base是水龙头的控制:

  1. 水压要足够大,水龙头才可以有水流出(VCE要足够大)

  2. 一旦水压足够大,水龙头的出水量就不再由水压控制,而是由控制龙头Base控制(ICE不受VCE控制,只受Base电流IB控制)

  3. 出水量与龙头控制间有一个比例关系(β倍)

 

将HBT器件在不同的VCE电压及不同的IB控制下的ICE在直角坐标系中描绘出来,就得到HBT器件的DC-IV曲线(直流DC状态下的电流电压曲线),DC-IV曲线是半导体器件中的重要特性曲线

 

图:将HBT器件理解为“水龙头”;HBT器件的DC-IV曲线

 

2.放大器的Load-line


实际放大器在工作中,需要驱动负载阻抗。放大器对负载阻抗的驱动作用以及其小信号电路等效如下图所示。在小信号等效电路中,HBT可以等效为电流控制电流源。


图:带有负载的放大器基本电路及其小信号等效模型

 

考虑负载后,在满足欧姆定律的条件下,点电压与电流的相互转换以电阻为斜率进行相互转换。将这种转换关系对应到前节所述DC-IV曲线上,就得到一根斜率为的直线,这根线称之为此时放大器的Load-lineLoad-line的斜率与负载呈反比,中文称为负载线。

 

图:输出电压与电流摆幅关系及Load-line

 

3.Load-line与输出功率间的关系

 

Load-line之所以重要,是因为其直接决定了放大器最大输出功率。

 

为了分析Load-line与输出功率的定性关系,在手算直观分析中,一般以A类放大器进行简化分析。B类、AB类等放大器结论相同,不过分析过程更为复杂,若考虑到谐波阻抗、负载阻抗虚部影响,就需要借助仿真软件仔细分析。

 

对于匹配到最佳负载的功率放大器来说,最大输出功率时其电压与电流摆幅均达到最大,交流峰值分别等于为,此时放大器的输出功率可以有多种表达方式,如:


此时:

并有关系:


由于在此负载线下,放大器有最大的输出功率,所以此负载线又叫放大器的最佳负载线:。对于某5G PA,以电压为例,若目标输出功率为34.5dBm (2.82W),则此时的最佳值Load-line在:


 

远离时,需要分两种情况进行讨论,分别为(高Load-line)及(低Load-line)。

 

当 


时,将此时负载线记为。当电压达到满摆幅时,电流并没有达到满摆幅。此时输出功率受限在电压摆幅上,所以输出功率只能以电压摆幅计算,即:


 

图:时的负载线

 

 

 

时,将此时负载线记为。当电流达到满摆幅时,电压并没有达到满摆幅。此时输出功率受限在电流摆幅上,所以输出功率只能以电流摆幅计算,即:



图:时的负载线

 

4.Load-line的阻抗与匹配

 

通过以上分析,可以得到某5G射频PA的最佳负载阻抗约在3.1Ω左右,在设计中,需要设计匹配网络将50Ω负载匹配至该目标负载阻抗。输出匹配网络在放大器中的位置与基本结构如下图所示:


图:5G PA的输出匹配网络

 

输出匹配网络将较高的50Ω阻抗匹配至较低的负载阻抗3.1Ω,可以证明,一个匹配网络的损耗和转换网络的Q值()成正比,和器件的Q值(主要为电感Q值,以25作为估计)成反比,即:



若采用单级L-C匹配网络,则50Ω到3.1Ω的损耗为15.6%,即0.74dB。

 

在转换比过大时,可采用多级匹配的方式减小损耗。比如采用两级匹配的方式进行匹配,若将50Ω先匹配至12Ω,再匹配至3.1 Ω,则两级匹配网络的损耗分别为7.1%及6.8%,整体损耗为13.4%,约0.63dB。


5. “高Load-line”与“低Load-line”PA

 

由于输出功率是由两个参数共同决定,所以在设计时可以采用高的方式(即高Load-line),也可以采用低与低的方式(即低Load-line)进行设计。

 

采用低压(配合低Load-line)方式设计的PA优势显而易见:更低工作电压使得供电只需要Buck电路, 不用 Boost,这样供电电路会简单并且电源转换效率更好。 虽然对于同样的输出功率来说,电压降低后电流会升高,但二者乘积相同,总功耗相同。


低压PA虽然优势明显,但对设计的挑战增大。低压PA所使用的Load-line较低,匹配网络进行转换时匹配网络的Q值变大,损耗增加。下表列出了采用4.2V设计时Load-line为3.1Ω,以此为标准,输出功率相同时,3.4V低压PA的Load-line为2.0Ω,损耗增加0.08dB,此额外损耗需要在设计中予以克服。对此损耗的克服一般通过优化PA设计可以实现。

 

随着电压再降低,输出匹配网络损耗快速增加,所以Load-line不能一直降低。另外,低压使用时,器件本身所占用的膝电压(,Knee Voltage)占的比重开始增加,进一步限制电压摆幅,影响输出功率。

 

图表:同输出功率,不同电压及Load-line下,
所对应的匹配网络损耗
 
6. 实际应用中的Load-line

  1.  以上分析采用简单Class A PA进行简化分析,在实际应用中手机PA通常用Class F,Class AB,ClassE, 和 Doherty等。这些PA需要的最佳负载可能是复数,并且需要考虑谐波负载,负载线的表现与Class A PA会有不同;


  2. 以上分析中,最佳负载线根据最大功率进行设计,通常PA设计需要综合考虑PAE与ACLR等其他指标;


  3. 另外,最佳负载匹配网络需要综合考虑阻抗变换比/网络元件Q/频率带宽三个要素。

 

Load-pull:负载线理论的最佳实践

 

虽然Load-line理论可以对PA特性进行简单清晰的分析,但在实际使用中,由于阻抗并非只有实部,并且加入导通角、匹配网络以及谐波影响后会变的非常复杂。Load-line理论对于清晰理解PA的设计思路很重要,但在实际设计与应用中显得心余力绌。

 

于是,Load-pull的概念被引入了进来。

 

说起Load-pull,射频人都不会陌生:在每本教科书里都会提到;Load-pull在Smith圆图上的等高线(Contour)也是PA设计和应用中的必备材料。下图为典型的Load-pull在Smith圆图上的结果呈现。


图:典型的Load-pull结果在Smith圆图上的呈现

 

相比于“Load-pull”名字的熟悉,大家对它背后的理论谈论较少。Load-pull的测试过程也像是“暴力破解”,好像没什么理论可依。

 

不过实际并非如此,Load-pull背后有详细的理论分析,PA届的大神Cripps于1983年发表的IEEE MTT-S的论文“A theory for the prediction of GaAs FET Load-pull Power Contours”[2]就曾用纯理论的方式对PA的Load-pull进行预测。通过测试验证,Cripps的理论预测完美的匹配了测试结果。


图:Cripps在1983年对PA Load-pull进行的理论预测及验证

 

接下来,就让我们沿着Cripps的思路,仔细理解Load-pull。

 

1. 什么是Load-pull

 

Load-pull的中文名翻译为“负载牵引”,是指将被测器件(DUT,Device under Test)的负载阻抗进行遍历,同时测试记录不同负载阻抗时的器件特性,从而得到最优阻抗的方法。

 

在CAD仿真软件中,Load-pull结果的获取较为容易,只需要将DUT的负载进行扫描,就可以绘制出多种多样的Load-pull图形,通常几秒中,就可以将Load-pull结果扫描出来。下图为使用ADS软件进行Load-pull仿真以及得到的结果 [3]。


图:采用ADS软件仿真得到的Load-pull结果

 

在实际测试中,想要精准的遍历各个阻抗就不如仿真中容易了,需要借助Tuner(阻抗调谐器)来实现负载阻抗的控制,Tuner也是整个Load-pull系统中最为重要的组成部分。Tuner可以理解为阻抗调谐匹配单元,可以将固定的负载阻抗有控制的匹配至Smith圆图上的其他位置。Load-pull测试系统的原理图及实际测试系统如下图所示[4][5]。

 

图:Load-pull测试系统原理图 [4]


图:Load-pull测试系统
(前置左右两侧白色器件分别为源Tuner及负载Tuner)[5]

 

2. Load-pull理论

 

通过对PA的仿真或测试,可以得到不同负载下PA不同输出功率的等高线图。为何PA输出功率会呈等高线形状,另外等高线形状是圆形吗?等高线一定是闭合的吗?接下来将进行详细讨论。


2.1 实阻抗在Load-pull中的表示

通过Load-line理论,可以得到PA负载在最佳负载线(,以下以表示)时有最大的输出功率。将此时的表示在Smith圆图上,就得到Load-pull的中心点。

 

同理,对于高Load-line时的负载及低Load-line时的,同样可以在Smith圆图上标注出来。处分别电压及电流受限,功率均小于处功率。

 

图:Load-line的负载与Load-pull的阻抗标注

 

2.2 高Load-line区:电压受限;等电导圆上功率不变

在高Load-line区,Load-line阻抗大于最优负载阻抗,Smith圆图表示为在的右侧。此时电压摆幅受限,输出功率以最大电压摆幅计算,为:



由于电压固定,当输出带有虚部时,采用并联等效电路进行功率计算更为方便,将此时负载电路等效如下:


图:用于电压驱动时的负载并联电路等效

 

此时,的最大值保持恒定,峰值为。若电导也保持一致,则输出功率恒定为:


 

即在高Load-line区,在等电导圆上输出功率恒定一致此时电压电流波形及在Smith圆图上的阻抗位置如下图所示。


图:高Load-line区域时,虚部增加对电压电流波形的影响 

 

需要注意的是,当负载阻抗在远离向短路点移动时,虽然电压摆幅保持一致,但电流摆幅会逐步增加。若电流摆幅增加至,则电流开始受限,不能使用前述电压与的方式计算功率,即功率无法保持恒定。有关电流达到受限的阻抗点后续将详细讨论。

 

在此讨论另外一个现象:当负载阻抗沿等圆移动时,可以看到电流摆幅明显增加。为何电流摆幅增加不会带来功率的增加呢?欢迎大家留言,讨论对此现象的理解。

2.3 低Load-line区:电流受限,等电阻圆上功率不变

在低Load-line区,Load-line阻抗小于最优负载阻抗,Smith圆图表示为在的左侧。此时电流摆幅受限,输出功率以最大电流摆幅计算,为:



当输出带有虚部时,由于电流受限,采用串联等效电路进行功率计算更为方便,将此时负载电路等效如下:


图:用于电流驱动时的负载串联电路等效

 

此时,的最大值保持恒定,峰值为。若电阻也保持一致,则输出功率恒定为:



在低Load-line区,在等电阻圆上输出功率恒定一致。此时电压电流波形及在Smith圆图上的阻抗位置如下图所示。


图:低Load-line区域时,虚部增加对电压电流波形的影响

 

与高Load-line区域分析类似,在此时同样要注意,随着负载阻抗远离向开路点移动时,电压摆幅也会逐步增加,直至电压受限。也同样可以讨论:为何电压摆幅的增加,没有带来功率的增加?

 

2.4 有关“受限”的讨论

在以上分析中,高Load-line区域电压受限,但当负载沿等圆移动时,电流摆幅增加,直至受限;低Load-line区域电流受限,但当负载沿等圆移动时,电压摆幅增加,直至受限。这个受限点在哪里呢?

 

对于高Load-line区域,设,则在等圆上,输出功率以表示,为:



此时,输出功率为最大输出功率的1/A

 

在低Load-line区域,若得到与此相同的输出功率,根据可得低Load-line区域的阻抗点阻抗 


计算高Load-line区域沿等圆变化时电流随阻抗实部的变化。此圆上的电流及阻抗实部分别以表示,以电流及阻抗的方式计算等圆上的输出功率为:


令其与电压、导纳计算方式得到的功率相同,则:



即:


当电流摆幅达到最大,即时:


 

即:在当等圆与等圆相交时,电流取到最大值,电流与电压同时受限。此时用Smith圆图表示的Load-pull曲线闭合,等功率圆呈现橄榄球形状的闭合曲线

 

当Smith圆图上的阻抗远离时,输出功率变小。所以,Smith圆图上的等功率圆呈现出一组闭合的等高线。


图:Load-pull曲线的闭合,以及Load-pull的等高线结果

 

3. 实际中的Load-pull

 

在实际应用中,观测到的Load-pull曲线和理论分析曲线可能存在差异,有以下几点需要注意:

  1. 匹配网络可能将Load-pull结果进行转移

  2. 谐波会影响Load-pull结果

  3. 以上为等功率圆,实际应用可能是等ACLR圆、等PAE圆,并且信号为带有带宽的调制信号

 

3.1 匹配网络对Load-pull的转移

以上分析均是以PA晶体管输出平面计算,由于匹配网络及寄生效应的影响,在芯片输出端口观测到的Load-pull可能会有不同。以下为不同平面看到的不同Load-pull示意图。

 

图:PA电路中不同平面观测到的Load-pull形状不同

 

3.2 谐波对Load-pull影响

以上分析中均为简化分析,只考虑基波(Fundamental)阻抗的影响,在PA设计中,其他高次谐波,如2f0、3f0等阻抗均会对PA功率、效率以及线性度产生影响。考虑谐波影响,Load-pull形状会有差异。

 

3.3 其他指标的Load-pull

以上分析针对PA中最为重要的指标:功率的Load-pull进行分析,PA的其他指标如线性度等,采用带有带宽的调制信号进行测试,其Load-pull形状大致相同。一般不会再针对其他指标进行详细分析。

 

   总  结   


Load-line与Load-pull是PA设计中最重要的两个基础概念,在过去几十年的射频PA设计中,前人专家也积累了许多经典的分析方法。

 

虽然5G等高阶通信协议的到来对射频PA提出了新的要求,近年来也涌现出如低压PA、高效率PA、高/低Load-line PA等不同PA产品,但射频PA的一些基础原理仍然是在PA设计中被广泛遵循的,期待和您一起对这些基础原理有更好的理解。


参考文献

[1].  RF Power Amplifiers forWireless Communications (second edition), Steve C. Cripps

[2].  Cripps, S. C. . "ATheory for the Prediction of GaAs FET Load-Pull Power Contours."International Microwave Symposium Digest IEEE, 1983.

[3]. https://www.ebaina.com/

[4]. https://www.microwavejournal.com/

[5]. https://www.maurymw.com/

- The End

版权声明:欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系删除。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

投稿/招聘/推广/合作/入群/赞助 请加微信:15881101905,备注关键词

“阅读是一种习惯,分享是一种美德,我们是一群专业、有态度的知识传播者

 阅读原文加入知识星球,发现更多精彩内容.

 分享💬 点赞👍 在看❤️@以“三连”行动支持优质内容!

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  • 产品质量合格率偏低会引起质量成本(也称“劣质成本”)的大幅增加。质量成本通常分为内部损失成本和外部损失成本两部分。内部损失成本是指产品交付前因质量不合格造成的损失,包括返工、报废等;外部损失成本是指产品交付后因质量问题导致的损失,如退货、召回等。此外,质量问题还会影响生产效率,带来额外人工和停工损失。下面分别介绍各类损失的具体计算方法和公式。直接成本损失(内部故障成本)直接成本是由于产品在出厂前质量不合格所造成的看得见的损失。常见的直接损失包括返工、报废以及由此产生的额外原材料消耗等。返工成本:
    优思学院 2025-03-05 15:25 77浏览
  • 案例1 2008款保时捷卡宴车行驶中发动机偶发熄火故障现象 一辆2008款保时捷卡宴车,搭载4.8 L 自然吸气发动机,累计行驶里程约为21万km。车主反映,该车行驶中发动机偶发熄火;重新起动,发动机能够起动着机,只是起动时间延长,且组合仪表上的发动机故障灯异常点亮。 故障诊断接车后试车,发动机起动及怠速运转正常。用故障检测仪检测,发动机控制单元(DME)中存储有故障代码“P0335 曲轴位置传感器A电路”,由此怀疑曲轴位置传感器信号偶尔异常,导致发动机熄火。用虹科Pico汽车示波器测
    虹科Pico汽车示波器 2025-03-05 11:00 62浏览
  • 在六西格玛项目中,团队的选择往往决定了最终的成败。合适的团队成员不仅能推动项目顺利进行,更能确保最终成果符合预期。因此,组建六西格玛团队时,必须挑选最合适的人才,确保他们具备必要的能力和特质。团队主管的关键特质每个精益六西格玛项目都需要一位主管来带领团队。他们不仅需要具备领导力,还要能够分析数据、制定策略,并与管理层和团队成员高效沟通。团队主管的核心职责包括:领导团队行动:能够激励成员,确保团队朝着既定目标前进。数据分析能力:精通数据处理和分析,能基于数据做出决策。沟通协调:能够在管理层和团队之
    优思学院 2025-03-06 12:51 92浏览
  • 以全志T536工业级处理器为引擎,驱动国产化创新,为千行百业提供降本增效新选择——飞凌嵌入式FET536-C核心板重磅发布!FET536-C全国产核心板FET536-C核心板基于全志发布的T536工业级处理器开发设计。主频1.6GHz,集成四核Cortex-A55、64位玄铁E907 RISC-V MCU,提供高效的计算能力;支持2TOPSNPU、安全启动、国密算法IP、全通路ECC、AMP、Linux-RT等,还具备广泛的连接接口:USB、SDIO、UART、SPI、CAN-FD、Ethern
    飞凌嵌入式 2025-03-05 10:38 58浏览
  • 服务器应用环境与客户需求PCIe 5.0高速接口技术的成熟驱动着生成式AI与高效能运算等相关应用蓬勃发展。在随着企业对服务器性能的要求日益严苛,服务器更新换代的周期也持续加快。在此背景下,白牌与DIY(Do It Yourself)服务器市场迎来了新的发展契机,但同时也面临着更趋复杂的技术挑战。传统上,白牌与DIY服务器以其高度客制化与成本效益优势受到市场青睐。然而,随着PCIe 5.0等高速技术的导入,服务器系统的复杂度大幅提升,对组装技术与组件兼容性也就提出更高的要求。举个简单的例子来说,P
    百佳泰测试实验室 2025-03-06 17:00 33浏览
  • 引言嘿,各位电动汽车的爱好者们!咱们今儿个就来聊聊电动汽车里那些“看不见,摸不着”,但又至关重要的零部件。要说电动汽车这玩意儿,那可真是科技含量满满,各种高精尖的技术都往里堆。但要让这些高科技玩意儿协同工作,稳定可靠地运转,那就得靠一些幕后英雄,比如说——电容器。你可能会想,电容器?这不就是电子电路里常见的元件嘛,能有多重要? 哎,你可别小瞧了这小小的电容器。在电动汽车的心脏地带——高压直流转换器(DC-DC转换器)里,车规级的电容器那可是扮演着举足轻重的角色。 今天,咱们就聚焦分析三星电机车规
    贞光科技 2025-03-05 17:02 86浏览
  • 1. 背景在汽车电子系统测试中,CANoe作为主流的仿真测试工具,常需与云端服务器、第三方软件或物联网设备进行交互。随着CANoe与外部软件、服务器或设备交互越来越多,直接使用Socket进行通信往往不能满足使用需求,依托于CANoe 的连接功能集(Connectivity Feature Set),以及Distributed Object(DO)功能,可以仿真HTTP节点,实现设备与服务器等之间的通信,保证数据处理的可靠性和便捷性。本文详细解析如何利用CANoe搭建HTTP测试环境,并提供典型
    北汇信息 2025-03-05 11:56 86浏览
  • 配电自动化终端DTU(数据终端单元)在智能电网的建设中扮演着至关重要的角色,它通过信息采集与控制,实现配电线路的遥测、故障检测及远程操作,极大提升了供电可靠性和效率。在国网新规的推动下,采用多核异构处理器设计的DTU方案日益成为主流,其中实时核与控制核的协同工作,为配电系统的实时监控与高效管理提供了有力保障。在此背景下,飞凌嵌入式基于FET536-C核心板的RISC-V核DTU解决方案应运而生,凭借卓越的性能和灵活的多核架构,引领配电自动化进入全新时代。1. T536核心板的优势飞凌嵌入式FET
    飞凌嵌入式 2025-03-05 10:42 78浏览
  • 多人同时共享相同无线网络,以下场景是否是您熟悉的日常?姐姐:「妈~我在房间在线上课,影音一直断断续续的怎么上课啊!」奶奶:「媳妇啊~我在在线追剧,影片一直卡卡的,实在让人生气!」除此之外,同时间有老公在跟客户开在线会议,还有弟弟在玩在线游戏,而妈妈自己其实也在客厅追剧,同时间加总起来,共有五个人同时使用这个网络!我们不论是在家里、咖啡厅、餐厅、商场或是公司,都会面临到周遭充斥着非常多的无线路由器(AP),若同时间每位使用者透过手机、平板或是笔电连接到相同的一个网络,可想而知网络上的壅塞及相互干扰
    百佳泰测试实验室 2025-03-06 16:50 24浏览
  • 在当今竞争激烈的市场环境中,企业不仅需要优化成本,还需积极响应国家的能源政策,减少对环境的影响。提升工业能源效率正是实现这一双重目标的关键。中国近年来大力推进“双碳”目标(碳达峰、碳中和),并出台了一系列政策鼓励企业节能减排。通过宏集CODRA的Panorama解决方案,企业可以获得专为这一目标设计的SCADA工具,实时监控和调整所有工业设备的能耗。特别是其中的能源管理模块,能够有效分析数据,预防故障,避免能源浪费。Panorama的优化技术宏集CODRA提供的解决方案,尤其是Panorama
    宏集科技 2025-03-06 11:25 110浏览
  • 文/Leon编辑/cc孙聪颖2025年全国两会进行时,作为“十四五”规划收官之年,本届两会释放出坚定目标、稳中求进、以进促稳等信号。其中,企业家们的建议备受关注,关系到民营经济在2025年的走向。作为国内科技制造业的“老兵”,全国人大代表、TCL集团创始人及董事长李东生在本届两会中提出三份代表建议,包括《关于优化中国科技制造业融资环境的建议》、《关于加强AI深度伪造欺诈管理的建议》和《关于降低灵活就业人员社会保险参保门槛的建议》,表现出对科技制造、AI发展和劳动者保障方面的关注。会后,李东生接受
    华尔街科技眼 2025-03-06 19:41 20浏览
  • 文/Leon编辑/侯煜‍2008至2021年间,创维以高举高打的凌厉之势,果断进行投资,一度成为中国市场大屏OLED产业的旗手,引领着显示技术的发展方向。但近年来,创维在 OLED 领域的发展轨迹却逐渐模糊,态度陷入暧昧不明的混沌状态。究其根源,一方面,创维对过往的押注难以割舍,在技术革新与市场变化的浪潮中,不愿轻易推翻曾经的战略布局;另一方面,早期在大屏OLED 技术研发、市场推广等环节投入的巨额资金,已然形成沉没成本,极大地限制了创维在显示技术路线上的重新抉择。但市场瞬息万变,为适应激烈的行
    华尔街科技眼 2025-03-05 20:03 144浏览
  • ASL6328芯片支持高达 6.0 Gbps 运行速率的交流和直流耦合输入T-MDS 信号,具备可编程均衡和抖动清理功能。ASL6328 是一款单端口 HDMI/DVI 电平转换 / 中继器,具有重新定时功能。它包含 TypeC双模式 DP 线缆适配器寄存器,可用于识别线缆适配器的性能。抖动清理 PLL(锁相环)能够消除输入抖动,并完全重置系统抖动容限,因此能更好地满足更高数据速率下 HDMI 抖动合规性要求。设备的运行和配置可通过引脚设置或 I2C 总线实现。自动断电和静噪功能提供了灵活的电
    QQ1540182856 2025-03-06 14:26 84浏览
  • 概述随着工业4.0的深入推进,制造业对自动化和智能化的需求日益增长。传统生产线面临空间不足、效率低下、灵活性差等问题,尤其在现有工厂改造项目中,如何在有限空间内实现高效自动化成为一大挑战。此次项目的客户需要在现有工厂基础上进行改造,空间有限。为此,客户选择了SCARA型线性轴机器人作为执行设备。然而,SCARA机器人的高效运行离不开强大的控制系统支持。宏集凭借其先进的智能控制系统,为客户提供了高效、灵活的自动化解决方案,确保SCARA机器人在有限空间内发挥最大效能。一、客户需求在此次改造项目中,
    宏集科技 2025-03-06 11:27 115浏览
  • 随着自动驾驶技术的迅猛发展,构建高保真、动态的仿真场景成为了行业的迫切需求。传统的三维重建方法在处理复杂场景时常常面临效率和精度的挑战。在此背景下,3D高斯点阵渲染(3DGS)技术应运而生,成为自动驾驶仿真场景重建的关键突破。一、3DGS技术概述与原理1、3DGS的技术概述3DGS是一种基于3D高斯分布的三维场景表示方法。通过将场景中的对象转化为多个3D高斯点,每个点包含位置、协方差矩阵和不透明度等信息,3DGS能够精确地表达复杂场景的几何形状和光照特性。与传统的神经辐射场(NeRF)方法相比,
    康谋 2025-03-06 13:17 113浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦