5G射频PA的Load-line与Load-pull

云脑智库 2022-05-16 00:00


来源 | 慧智微电子

智库 | 云脑智库(CloudBrain-TT)

云圈 | “云脑智库微信群”,请加微信:15881101905,备注您的研究方向

声明 | 本号聚焦相关知识分享,内容观点不代表本号立场,可追溯内容均注明来源,若存在版权等问题,请联系(15881101905,微信同号)删除,谢谢


说到射频PA(Power Amplifier,功率放大器)的设计和应用,有两个名词经常被大家提及:Load-line与Load-pull。在使用中,这两个名词太过常用了,以至于对这两个名词后面的理论依据反而讨论不多。接下来我们就对Load-line和Load-pull背后的知识做一个讨论。


Load-line:负载线,PA的生命线


Load-line中文名称为负载线,是PA设计中最为重要的设计参考。
 
对于PA来说,最重要的目的是进行功率有效的放大与输出,一切的设计理念均是为此服务。此时,以最大功率“传输”为首要目标的共轭传输无法完成最大功率“输出”的目的:PA需要实现的是将射频功率最大程度的从直流功率中榨取出来,而不是将已经产生的信号传输出去。实现射频功率最大化输出用到的就是“最佳负载匹配”,而不是用来最大化传输已有功率的“共轭匹配”
 
为了直观分析PA在不同负载下的功率输出,在PA设计中就引入了“负载线(Load-line)”的概念,用以观测PA在不同负载下的射频电压与电流摆幅,从而得出不同负载下的功率输出,找到最佳负载。
 

1.晶体管的DC-IV曲线

 

PA工作是基于晶体管的特性工作的,所以在讨论PA的Load-line之前,首先对晶体管特性做一个分析。

 

PA可以采用HBT、MOSFET、pHEMT等多种半导体工艺进行设计,不同工艺设计在PA的Load-line理论中分析方法基本相同。以下将以射频PA中最为常用的HBT(Hetero-Junction Bipolar Transistor, 异质结双极型晶体管)器件为例进行分析。

 

HBT是一种特殊的BJT(Bipolar Junction Transistor,双极型晶体管),由两个背靠背连接的PN结构成。下图为HBT器件与其所设计的放大器的基本结构。

                           

图:HBT器件及共发射极放大器基本结构

 

对于HBT器件来说,由于Base的小电压(或电流)可以对Collector的大电流进行控制,所以一个小的Base输出信号,就可以经由HBT器件在Collector产生大的输出信号,这就是HBT作为放大器的基本原理。

 

理想情况下,HBT器件在工作中有以下几个特点:

  1. VCE要足够的大,才能建立起CE之间的电流

  2.  VCE足够大之后,ICE不受VCE控制,只受Base电流IB控制

  3. ICE与IB呈β倍关系


简单起见,为了理解这种控制关系,可以把HBT器件理解为一个水龙头,Collector是水龙头的输入,Emitter是水龙头的输出,而Base是水龙头的控制:

  1. 水压要足够大,水龙头才可以有水流出(VCE要足够大)

  2. 一旦水压足够大,水龙头的出水量就不再由水压控制,而是由控制龙头Base控制(ICE不受VCE控制,只受Base电流IB控制)

  3. 出水量与龙头控制间有一个比例关系(β倍)

 

将HBT器件在不同的VCE电压及不同的IB控制下的ICE在直角坐标系中描绘出来,就得到HBT器件的DC-IV曲线(直流DC状态下的电流电压曲线),DC-IV曲线是半导体器件中的重要特性曲线

 

图:将HBT器件理解为“水龙头”;HBT器件的DC-IV曲线

 

2.放大器的Load-line


实际放大器在工作中,需要驱动负载阻抗。放大器对负载阻抗的驱动作用以及其小信号电路等效如下图所示。在小信号等效电路中,HBT可以等效为电流控制电流源。


图:带有负载的放大器基本电路及其小信号等效模型

 

考虑负载后,在满足欧姆定律的条件下,点电压与电流的相互转换以电阻为斜率进行相互转换。将这种转换关系对应到前节所述DC-IV曲线上,就得到一根斜率为的直线,这根线称之为此时放大器的Load-lineLoad-line的斜率与负载呈反比,中文称为负载线。

 

图:输出电压与电流摆幅关系及Load-line

 

3.Load-line与输出功率间的关系

 

Load-line之所以重要,是因为其直接决定了放大器最大输出功率。

 

为了分析Load-line与输出功率的定性关系,在手算直观分析中,一般以A类放大器进行简化分析。B类、AB类等放大器结论相同,不过分析过程更为复杂,若考虑到谐波阻抗、负载阻抗虚部影响,就需要借助仿真软件仔细分析。

 

对于匹配到最佳负载的功率放大器来说,最大输出功率时其电压与电流摆幅均达到最大,交流峰值分别等于为,此时放大器的输出功率可以有多种表达方式,如:


此时:

并有关系:


由于在此负载线下,放大器有最大的输出功率,所以此负载线又叫放大器的最佳负载线:。对于某5G PA,以电压为例,若目标输出功率为34.5dBm (2.82W),则此时的最佳值Load-line在:


 

远离时,需要分两种情况进行讨论,分别为(高Load-line)及(低Load-line)。

 

当 


时,将此时负载线记为。当电压达到满摆幅时,电流并没有达到满摆幅。此时输出功率受限在电压摆幅上,所以输出功率只能以电压摆幅计算,即:


 

图:时的负载线

 

 

 

时,将此时负载线记为。当电流达到满摆幅时,电压并没有达到满摆幅。此时输出功率受限在电流摆幅上,所以输出功率只能以电流摆幅计算,即:



图:时的负载线

 

4.Load-line的阻抗与匹配

 

通过以上分析,可以得到某5G射频PA的最佳负载阻抗约在3.1Ω左右,在设计中,需要设计匹配网络将50Ω负载匹配至该目标负载阻抗。输出匹配网络在放大器中的位置与基本结构如下图所示:


图:5G PA的输出匹配网络

 

输出匹配网络将较高的50Ω阻抗匹配至较低的负载阻抗3.1Ω,可以证明,一个匹配网络的损耗和转换网络的Q值()成正比,和器件的Q值(主要为电感Q值,以25作为估计)成反比,即:



若采用单级L-C匹配网络,则50Ω到3.1Ω的损耗为15.6%,即0.74dB。

 

在转换比过大时,可采用多级匹配的方式减小损耗。比如采用两级匹配的方式进行匹配,若将50Ω先匹配至12Ω,再匹配至3.1 Ω,则两级匹配网络的损耗分别为7.1%及6.8%,整体损耗为13.4%,约0.63dB。


5. “高Load-line”与“低Load-line”PA

 

由于输出功率是由两个参数共同决定,所以在设计时可以采用高的方式(即高Load-line),也可以采用低与低的方式(即低Load-line)进行设计。

 

采用低压(配合低Load-line)方式设计的PA优势显而易见:更低工作电压使得供电只需要Buck电路, 不用 Boost,这样供电电路会简单并且电源转换效率更好。 虽然对于同样的输出功率来说,电压降低后电流会升高,但二者乘积相同,总功耗相同。


低压PA虽然优势明显,但对设计的挑战增大。低压PA所使用的Load-line较低,匹配网络进行转换时匹配网络的Q值变大,损耗增加。下表列出了采用4.2V设计时Load-line为3.1Ω,以此为标准,输出功率相同时,3.4V低压PA的Load-line为2.0Ω,损耗增加0.08dB,此额外损耗需要在设计中予以克服。对此损耗的克服一般通过优化PA设计可以实现。

 

随着电压再降低,输出匹配网络损耗快速增加,所以Load-line不能一直降低。另外,低压使用时,器件本身所占用的膝电压(,Knee Voltage)占的比重开始增加,进一步限制电压摆幅,影响输出功率。

 

图表:同输出功率,不同电压及Load-line下,
所对应的匹配网络损耗
 
6. 实际应用中的Load-line

  1.  以上分析采用简单Class A PA进行简化分析,在实际应用中手机PA通常用Class F,Class AB,ClassE, 和 Doherty等。这些PA需要的最佳负载可能是复数,并且需要考虑谐波负载,负载线的表现与Class A PA会有不同;


  2. 以上分析中,最佳负载线根据最大功率进行设计,通常PA设计需要综合考虑PAE与ACLR等其他指标;


  3. 另外,最佳负载匹配网络需要综合考虑阻抗变换比/网络元件Q/频率带宽三个要素。

 

Load-pull:负载线理论的最佳实践

 

虽然Load-line理论可以对PA特性进行简单清晰的分析,但在实际使用中,由于阻抗并非只有实部,并且加入导通角、匹配网络以及谐波影响后会变的非常复杂。Load-line理论对于清晰理解PA的设计思路很重要,但在实际设计与应用中显得心余力绌。

 

于是,Load-pull的概念被引入了进来。

 

说起Load-pull,射频人都不会陌生:在每本教科书里都会提到;Load-pull在Smith圆图上的等高线(Contour)也是PA设计和应用中的必备材料。下图为典型的Load-pull在Smith圆图上的结果呈现。


图:典型的Load-pull结果在Smith圆图上的呈现

 

相比于“Load-pull”名字的熟悉,大家对它背后的理论谈论较少。Load-pull的测试过程也像是“暴力破解”,好像没什么理论可依。

 

不过实际并非如此,Load-pull背后有详细的理论分析,PA届的大神Cripps于1983年发表的IEEE MTT-S的论文“A theory for the prediction of GaAs FET Load-pull Power Contours”[2]就曾用纯理论的方式对PA的Load-pull进行预测。通过测试验证,Cripps的理论预测完美的匹配了测试结果。


图:Cripps在1983年对PA Load-pull进行的理论预测及验证

 

接下来,就让我们沿着Cripps的思路,仔细理解Load-pull。

 

1. 什么是Load-pull

 

Load-pull的中文名翻译为“负载牵引”,是指将被测器件(DUT,Device under Test)的负载阻抗进行遍历,同时测试记录不同负载阻抗时的器件特性,从而得到最优阻抗的方法。

 

在CAD仿真软件中,Load-pull结果的获取较为容易,只需要将DUT的负载进行扫描,就可以绘制出多种多样的Load-pull图形,通常几秒中,就可以将Load-pull结果扫描出来。下图为使用ADS软件进行Load-pull仿真以及得到的结果 [3]。


图:采用ADS软件仿真得到的Load-pull结果

 

在实际测试中,想要精准的遍历各个阻抗就不如仿真中容易了,需要借助Tuner(阻抗调谐器)来实现负载阻抗的控制,Tuner也是整个Load-pull系统中最为重要的组成部分。Tuner可以理解为阻抗调谐匹配单元,可以将固定的负载阻抗有控制的匹配至Smith圆图上的其他位置。Load-pull测试系统的原理图及实际测试系统如下图所示[4][5]。

 

图:Load-pull测试系统原理图 [4]


图:Load-pull测试系统
(前置左右两侧白色器件分别为源Tuner及负载Tuner)[5]

 

2. Load-pull理论

 

通过对PA的仿真或测试,可以得到不同负载下PA不同输出功率的等高线图。为何PA输出功率会呈等高线形状,另外等高线形状是圆形吗?等高线一定是闭合的吗?接下来将进行详细讨论。


2.1 实阻抗在Load-pull中的表示

通过Load-line理论,可以得到PA负载在最佳负载线(,以下以表示)时有最大的输出功率。将此时的表示在Smith圆图上,就得到Load-pull的中心点。

 

同理,对于高Load-line时的负载及低Load-line时的,同样可以在Smith圆图上标注出来。处分别电压及电流受限,功率均小于处功率。

 

图:Load-line的负载与Load-pull的阻抗标注

 

2.2 高Load-line区:电压受限;等电导圆上功率不变

在高Load-line区,Load-line阻抗大于最优负载阻抗,Smith圆图表示为在的右侧。此时电压摆幅受限,输出功率以最大电压摆幅计算,为:



由于电压固定,当输出带有虚部时,采用并联等效电路进行功率计算更为方便,将此时负载电路等效如下:


图:用于电压驱动时的负载并联电路等效

 

此时,的最大值保持恒定,峰值为。若电导也保持一致,则输出功率恒定为:


 

即在高Load-line区,在等电导圆上输出功率恒定一致此时电压电流波形及在Smith圆图上的阻抗位置如下图所示。


图:高Load-line区域时,虚部增加对电压电流波形的影响 

 

需要注意的是,当负载阻抗在远离向短路点移动时,虽然电压摆幅保持一致,但电流摆幅会逐步增加。若电流摆幅增加至,则电流开始受限,不能使用前述电压与的方式计算功率,即功率无法保持恒定。有关电流达到受限的阻抗点后续将详细讨论。

 

在此讨论另外一个现象:当负载阻抗沿等圆移动时,可以看到电流摆幅明显增加。为何电流摆幅增加不会带来功率的增加呢?欢迎大家留言,讨论对此现象的理解。

2.3 低Load-line区:电流受限,等电阻圆上功率不变

在低Load-line区,Load-line阻抗小于最优负载阻抗,Smith圆图表示为在的左侧。此时电流摆幅受限,输出功率以最大电流摆幅计算,为:



当输出带有虚部时,由于电流受限,采用串联等效电路进行功率计算更为方便,将此时负载电路等效如下:


图:用于电流驱动时的负载串联电路等效

 

此时,的最大值保持恒定,峰值为。若电阻也保持一致,则输出功率恒定为:



在低Load-line区,在等电阻圆上输出功率恒定一致。此时电压电流波形及在Smith圆图上的阻抗位置如下图所示。


图:低Load-line区域时,虚部增加对电压电流波形的影响

 

与高Load-line区域分析类似,在此时同样要注意,随着负载阻抗远离向开路点移动时,电压摆幅也会逐步增加,直至电压受限。也同样可以讨论:为何电压摆幅的增加,没有带来功率的增加?

 

2.4 有关“受限”的讨论

在以上分析中,高Load-line区域电压受限,但当负载沿等圆移动时,电流摆幅增加,直至受限;低Load-line区域电流受限,但当负载沿等圆移动时,电压摆幅增加,直至受限。这个受限点在哪里呢?

 

对于高Load-line区域,设,则在等圆上,输出功率以表示,为:



此时,输出功率为最大输出功率的1/A

 

在低Load-line区域,若得到与此相同的输出功率,根据可得低Load-line区域的阻抗点阻抗 


计算高Load-line区域沿等圆变化时电流随阻抗实部的变化。此圆上的电流及阻抗实部分别以表示,以电流及阻抗的方式计算等圆上的输出功率为:


令其与电压、导纳计算方式得到的功率相同,则:



即:


当电流摆幅达到最大,即时:


 

即:在当等圆与等圆相交时,电流取到最大值,电流与电压同时受限。此时用Smith圆图表示的Load-pull曲线闭合,等功率圆呈现橄榄球形状的闭合曲线

 

当Smith圆图上的阻抗远离时,输出功率变小。所以,Smith圆图上的等功率圆呈现出一组闭合的等高线。


图:Load-pull曲线的闭合,以及Load-pull的等高线结果

 

3. 实际中的Load-pull

 

在实际应用中,观测到的Load-pull曲线和理论分析曲线可能存在差异,有以下几点需要注意:

  1. 匹配网络可能将Load-pull结果进行转移

  2. 谐波会影响Load-pull结果

  3. 以上为等功率圆,实际应用可能是等ACLR圆、等PAE圆,并且信号为带有带宽的调制信号

 

3.1 匹配网络对Load-pull的转移

以上分析均是以PA晶体管输出平面计算,由于匹配网络及寄生效应的影响,在芯片输出端口观测到的Load-pull可能会有不同。以下为不同平面看到的不同Load-pull示意图。

 

图:PA电路中不同平面观测到的Load-pull形状不同

 

3.2 谐波对Load-pull影响

以上分析中均为简化分析,只考虑基波(Fundamental)阻抗的影响,在PA设计中,其他高次谐波,如2f0、3f0等阻抗均会对PA功率、效率以及线性度产生影响。考虑谐波影响,Load-pull形状会有差异。

 

3.3 其他指标的Load-pull

以上分析针对PA中最为重要的指标:功率的Load-pull进行分析,PA的其他指标如线性度等,采用带有带宽的调制信号进行测试,其Load-pull形状大致相同。一般不会再针对其他指标进行详细分析。

 

   总  结   


Load-line与Load-pull是PA设计中最重要的两个基础概念,在过去几十年的射频PA设计中,前人专家也积累了许多经典的分析方法。

 

虽然5G等高阶通信协议的到来对射频PA提出了新的要求,近年来也涌现出如低压PA、高效率PA、高/低Load-line PA等不同PA产品,但射频PA的一些基础原理仍然是在PA设计中被广泛遵循的,期待和您一起对这些基础原理有更好的理解。


参考文献

[1].  RF Power Amplifiers forWireless Communications (second edition), Steve C. Cripps

[2].  Cripps, S. C. . "ATheory for the Prediction of GaAs FET Load-Pull Power Contours."International Microwave Symposium Digest IEEE, 1983.

[3]. https://www.ebaina.com/

[4]. https://www.microwavejournal.com/

[5]. https://www.maurymw.com/

- The End

版权声明:欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系删除。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

投稿/招聘/推广/合作/入群/赞助 请加微信:15881101905,备注关键词

“阅读是一种习惯,分享是一种美德,我们是一群专业、有态度的知识传播者

 阅读原文加入知识星球,发现更多精彩内容.

 分享💬 点赞👍 在看❤️@以“三连”行动支持优质内容!

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 37浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 249浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 27浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 208浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 172浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 143浏览
  • 近期,智能家居领域Matter标准的制定者,全球最具影响力的科技联盟之一,连接标准联盟(Connectivity Standards Alliance,简称CSA)“利好”频出,不仅为智能家居领域的设备制造商们提供了更为快速便捷的Matter认证流程,而且苹果、三星与谷歌等智能家居平台厂商都表示会接纳CSA的Matter认证体系,并计划将其整合至各自的“Works with”项目中。那么,在本轮“利好”背景下,智能家居的设备制造商们该如何捉住机会,“掘金”万亿市场呢?重认证快通道计划,为家居设备
    华普微HOPERF 2025-01-16 10:22 186浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 114浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 32浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 151浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 116浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 166浏览
  • 晶台光耦KL817和KL3053在小家电产品(如微波炉等)辅助电源中的广泛应用。具备小功率、高性能、高度集成以及低待机功耗的特点,同时支持宽输入电压范围。▲光耦在实物应用中的产品图其一次侧集成了交流电压过零检测与信号输出功能,该功能产生的过零信号可用于精确控制继电器、可控硅等器件的过零开关动作,从而有效减小开关应力,显著提升器件的使用寿命。通过高度的集成化和先进的控制技术,该电源大幅减少了所需的外围器件数量,不仅降低了系统成本和体积,还进一步增强了整体的可靠性。▲电路示意图该电路的过零检测信号由
    晶台光耦 2025-01-16 10:12 102浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 183浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,与汽车技术领先者法雷奥合作,采用创新的开放系统协议(OSP)技术,旨在改变汽车内饰照明方式,革新汽车行业座舱照明理念。结合艾迈斯欧司朗开创性的OSIRE® E3731i智能LED和法雷奥的动态环境照明系统,两家公司将为车辆内饰设计和功能设立一套全新标准。汽车内饰照明的作用日益凸显,座舱设计的主流趋势应满足终端用户的需求:即易于使用、个性化,并能提供符合用户生活方式的清晰信息。因此,动态环境照明带来了众多新机遇。智能LED的应用已
    艾迈斯欧司朗 2025-01-15 19:00 81浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦