PCBLayout时,MOS管栅极串联电阻放哪儿?

原创 硬件工程师炼成之路 2022-05-15 12:30

前一段时间有个兄弟问了个问题,把我问住了,问题是这个:

如上图,串联的电阻R1到底是放在靠近IC端,还是靠近MOS端?(注意,图中的L1是走线寄生电感,并不是这里放了个电感器件)

 

我们具体沟通的情况是这样的:

 

这位兄弟说大部分工程师和IC原厂都是这么做的,但是没有说为什么,我当时也不清楚。但是这个问题确实是个好问题,现实中的确存在

 

任何一个问题都是提升技术的机会,所以,我记了下来,然后花时间看了看。

 

在这之前,为了让所有兄弟都能跟上节奏,那必须先得搞清楚这个串联的电阻是干什么用的。

 

简单说,这个串联的电阻就是抑制振荡用的,具体怎么回事,我以前专门写过文章,不知道的可以去瞅瞅——“LC串联谐振的意义-MOS管栅极电阻

 

真实情况如何

 

首先,这位兄弟说大部分都是放靠近MOS端。关于这一点,我先去求证了下,看实际情况是否真是如此?

 

一般这种驱动MOS的电路,开关电源和电机驱动居多,因此,我就去找了这两类IC的厂商,去看看它们的demo板是怎么Layout的。

 

1、  TI的无刷电机驱动芯片DRV8300的demo板

Demo板硬件设计可以直接在Ti官网下载,如下图,可以看到,串联电阻是放置在MOS管端的

 

2、  Ti的POE方案TPS23753A的Demo板

原理图如下:


PCB如下图,串联电阻也是放置在靠近MOS管端。

 

3、  MPS的无刷电机驱动芯片MP6535。

如下图,6个MOS的栅极串联电阻R18,R19,R20,R21,R22,R23放置在中间。


从走线长度看,Q1,Q2,Q3串联的电阻离MOS较近,离驱动IC较远。Q4,Q5,Q6串联的电阻在MOS和驱动IC中间

 

就上面3个例子来说,兄弟说的“大部分情况栅极串联电阻靠近MOS管放置”确实是属实的。

 

那我聊天记录里面说的“放源端比较好,就像高速信号的阻抗匹配放源端”,这一点又是考虑了什么呢?

 

是否需要考虑阻抗匹配


考虑到阻抗匹配,那就是将信号看作是高速信号,那么到底栅极驱动信号是不是高速信号呢?

 

一般来说,高速信号的认定规则是这样的:信号的上升沿小于6倍的传输延时。那我们大致算一下就知道是不是高速信号了。


PCB上信号传输速度为6inch/ns,也就是0.1524m/ns

 

以DRV8300为例子,可以从手册中看到栅极驱动信号波形,如下图的GHA就是:

 

上升沿大概是400ns,如果要将其看成是高速信号,那么需要满足公式:

400ns<6*L/(0.1524m)


算得L>10.16m

 

显然,我们的栅极走线远小于10m,所以栅极走线不用看成是高速信号线,也就说不用考虑阻抗匹配的问题,用集总参数模型分析即可。

 

一般情况下,我们的栅极走线长度不会超过10cm。那么当走线是10cm时,如果要将其看成是高速信号,那么对应的Tr<3.9ns

 

我印象中,MOS管驱动电路,上升时间都不会这么小,所以,都是不用将其考虑成高速信号的了,也就是说从这个维度考虑,这个电阻不必放置到靠近源端IC。

 

放置到靠近MOS端有什么好处


既然不必放到靠近IC,那么放到靠近MOS有什么好处呢?


其实从上面两个模型看来, 对于MOS栅极来说,它们收到的信号没有任何的差别。


为什么这么说呢?因为电感和电阻始终是串联的,如果把它们看成一个整体,阻抗就是R+jwL,对于整个电路来说完全是相同的,等效为下面这个:



所以,我不觉得串联电阻靠近MOS放置有什么特别的作用。

 

小结


以上就是,我目前对于MOS管栅极串联电阻放在哪儿的看法。

 

我觉得放在哪里无所谓,靠近MOS,靠近驱动IC都行,放中间也行,重要的总的走线长度要短(这一点在很多手册中都有提到,主要为了降低走线寄生电感)。

 

当然了,极有可能有其它我还没考虑到的因素,所以我觉得放哪儿都行是不对的。

 

欢迎兄弟们在留言区探讨这个问题,集众人之力,将这个问题搞清楚。


再送4本书


老规矩,留言前4楼,每人送一本书——《硬件十万个为什么(无源器件篇)》


本书分为三篇,每篇对应一类电子元器件,以问答的形式对三类元器件的原理和使用进行详细的解释。每篇还包括元器件的选型规范,帮助读者快速掌握元器件的选型原则。

       活动规则:在本文推送后24小时内留言点赞最多前4楼各送一本,兄弟们,看你们显神通啦!


运气不佳的兄弟也可以支持下我,从下面链接购买:


推荐阅读:

1、我写的东西都在这里了

2、LC串联谐振的意义


硬件工程师炼成之路 硬件工程师的分享、交流、学习的地方。
评论
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 65浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 90浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 66浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 108浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 69浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 51浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 81浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 70浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 75浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 77浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦