华为甘斌:持续创新5G上行助力“1+1+N”网络深化数智转型

原创 网优雇佣军 2022-05-13 08:59

无论ToC还是ToB,5G时代的新业务都对网络上行能力提出了空前需求。为不断推动5G应用繁荣发展,全面赋能数智社会转型,推进上行技术创新已是贯穿5G发展周期的一条鲜明主线。


自5G商用以来,无线产业基于更大的带宽资源以及提升上行时隙配比、超级上行等技术,大大提升了网络上行体验,已推动5G直播、VR游戏、高清监控等应用繁荣发展,并推动5G走进工业、医疗、教育、交通等多个领域,探索出1万多个行业应用创新案例。


如今面向5.5G时代,随着5G应用逐渐向行业核心生产环节渗透,机器间协同、机器视觉AI检测等应用对网络上行能力提出了更高的需求,行业又将如何围绕上行赛道持续创新突破?


2022年5月10日,在华为与中国电信联合举办的“超级时频折叠” 5G-Advanced创新技术发布会上,华为无线网络产品线副总裁甘斌分享了双方在5G网络上行增强上的合作创新历程,以及展望了未来5.5G网络。




“双超”创新,

多频协同提升上行体验



无线频谱是移动网络的生命之源,也是弥足珍贵的稀缺资源。但不同的无线频段具有不同的特性,不同频率分配模式下的网络能力是不相同的。


从带宽角度看, TDD中频段具有频谱连续且带宽大的优势,但由于TDD双工模式在同一频段上分时发送上下行信号,时隙配比决定了上下行资源分配,存在上下行体验不对称的问题,无法满足未来5G应用越来越高的上下行大带宽需求。比如,以常用的4:1配比模式为例,上行带宽只有下行带宽的1/4。而FDD低频段在对称频段上全时隙传输上下行信号,上下行带宽对称,且时延更低,但缺点是频谱离散且带宽小。以电信联通共建共享为例,尽管双方总共拥有超100M带宽的存量FDD低频资源,但这些频段各自分布在800MHz、900MHz、1.8GHz、2.1GHz频段上,且各自带宽仅为10至20MHz左右。


从覆盖角度看,5G TDD中频段比2/3/4G使用的FDD低频段频率更高、信号传播能力更弱、穿透能力更差。尽管5G通过Massive MIMO技术大幅提升了下行覆盖能力,但因受限于终端的发射功率、天线数量等能力,网络上行短板依然存在。这不利于运营商快速、低成本部署一张城区深度覆盖、农村广泛覆盖的大带宽5G网络来加速催生5G ToC和ToB新业务。


因此,面对越来越高的5G上行带宽需求,随着5G网络规模部署和5G用户不断增长,用户加速向5G网络迁移,2/3/4G频段逐渐释放出来,充分利用存量频谱资源,让TDD和FDD各个频段之间达成优势互补,成为了无线产业持续提升网络上行能力的必然创新方向。“超级上行超级频率聚变两大创新技术正是在这样的背景下应运而生。



2019年6月,电信与华为共同提出“超级上行”创新解决方案,通过 C-band与现有一个FDD 20M载波互补来提升网络上行带宽能力,实现了上行体验2倍提升。超级上行通过中低频协同和时频聚合创新,不仅以FDD低频段的无线传播优势补齐了TDD中频段的上行覆盖短板,更关键的是实现了上行数据全时隙发送,大大提升了5G上行带宽能力。


超级上行推出后得到了芯片、模组、终端厂商等产业伙伴的广泛支持,目前海思、联发科、展锐均已推出支持超级上行的芯片产品,市场上支持超级上行的5G手机、模组、企业路由器、 CPE等终端数量已达近7000万部。自2021年4月中国电信与华为在厦门联合发布超级上行规模商用第一城以来,已有超过20个城市规模商用了超级上行。在ToB领域,超级上行已服务十多个行业。


电信和华为在5G上行创新的路上依然马不停蹄。2021年2月,电信与华为联合发布“超级频率聚变”,将多个离散的频谱高效形成频谱云化,通过扩大聚合FDD存量频谱,进一步提升上行带宽,实现了上行体验3倍提升。


超级频率聚变技术可以将更多的FDD离散频谱以频谱池化的方式融为一体,虚拟为一个连续的大带宽频段,从而能更好满足5G业务上行大带宽需求,并通过上下行解耦实现上行资源池灵活调度,可大幅提升频谱利用率。



超级时频折叠,

迈向5.5G千兆上行时代



未来,随着行业数字化转型加速发展,5G行业应用将从当前的行业辅助生产环节向核心生产环节规模渗透,行业核心生产环节涉及的机器运动控制、机器间协同、机器视觉AI检测等应用对5G网络的上行带宽、时延和可靠性将提出更加苛刻的需求。在上行带宽方面,工业3D机器视觉、工业AR检测等应用需Gbps大上行速率;在时延方面,在所有工业控制协议中,约15%要求时延不高于1ms、约35%要求时延不高于4ms、约30%要求时延不高于10ms,比如机器间协作、危险及恶劣环境下的远程控制要求时延不大于4ms。毫无疑问,当前的5G网络能力无法满足以上苛刻需求,要全面赋能产业数字化转型升级,行业亟需加速关键技术创新突破。


要满足核心生产环节的上行大带宽需求,首先当然要扩大频谱使用范围,扩宽信息高速公路。对此,5G频段将从现在的Sub 3GHz、C-band扩展到6GHz和毫米波,逐步走向Sub 100GHz全频段。但问题是,不管是6GHz还是毫米波频段,未来的新频段都采用TDD双工模式。尽管频谱带宽越来越大,但仍无法摆脱TDD存在的上下行体验不平衡、时延较高的问题,那如何更好满足行业核心生产环节的应用场景对上行带宽和时延提出的苛刻需求?


本次大会上的主角“超级时频折叠”给出了答案,其通过TDD双载波时域互补,模拟FDD全时隙上下行空口,可在TDD大带宽下实现如FDD模式的上下行均衡和低时延优势。



以中国电信和中国联通以3.5GHz频段共建共享200M大带宽5G网络为例,通过超级时频折叠技术,一个100M载波采用7:3时隙配比,另一个100M载波配置3:7时隙比,两个载波的上下行时域刚好互补,如同在FDD全双工模式下上下行均以100MHz对称大带宽全时隙发送。


这很容易让人联想到科幻电影里利用虫洞实现的“时空折叠”, 其如同通过对折将一张纸上两端的两点重合,从而能瞬时完成空间转移或时间旅行。而超级时频折叠也类似如此实现了两个TDD大带宽载波之间的时域“重合”,从而大幅降低了TDD时延,将低时延和上行大带宽能力集于一体。


甘斌介绍,华为与电信已对超级时频折叠技术进行了联合验证,结果显示,使用C-band频谱折叠互补增加上行带宽,上行体验超过了1Gbps。相对于原先的TDD 7:3的单载波,上行速率提升接近5倍。基于全时隙上下行特征,超级时频折叠技术还将端到端时延从单载波7:3时隙配比下的10ms降至4ms以下。显然,这使得5G上行能力可匹配未来行业核心生产环节的多种业务需求,利于加速5G全面、深入赋能千行百业。



持续多维度创新,

加速5.5G深化数智转型



当前,移动产业正从5G迈向5.5G。自2020年华为提出5.5G愿景后,2021年3GPP正式决定将Rel-18及以后的标准命名为5G-Advanced,这意味着无线产业已迎来5.5G时代。


5G,开启数智社会;5.5G,深化数智转型。为加速推动5.5G深化行业数智化转型,甘斌在会上还提出了“1+1+N5.5G建网理念,即在一张无处不在的5G千兆基础网之上,构建5.5G万兆体验层,在毫秒级时延下实现泛在下行万兆体验和上行千兆体验,另外还将通感一体、无源物联、工业大上行、高精定位等多个新能力按需叠加部署,以支撑千亿联接需求。



要实现这一建网目标,需行业在多个维度上持续进行技术创新。其中,持续提升上行能力是关键支柱之一。从华为和电信5G上行创新历程看,从提出双超创新,到超级时频折叠技术,双方围绕上行赛道不断突破,正推动5.5G愿景加速实现。


更值得一提的是,除了5G超级上行核心技术已纳入3GPP R16标准并实现规模商用,超级频率聚变已在R18成功首批立项,双方正持续引领产业方向。相信在标准引领下,产业界将形成更强大的合力,进一步加速5.5G愿景走进现实。


网优雇佣军投稿邮箱:wywd11@126.com
长按二维码关注
通信路上,一起走!
网优雇佣军 通信、科技、未来!通信路上,一起走!
评论
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 61浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 120浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 85浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 187浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 205浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 189浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 117浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 146浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 314浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 154浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦