干货 | STM32单片机按键消抖和FPGA按键消抖大全

嵌入式ARM 2020-03-11 00:00


写在前面:



按键去抖:由上图可以看出理想波形与实际波形之间是有区别的,实际波形在按下和释放的瞬间都有抖动的现象,抖动时间的长短和按键的机械特性有关,一般为5~10ms。通常我们手动按键然后释放,这个动作中稳定闭合的时间超过了20ms。因此单片机在检测键盘是否按下时都要加上去抖动操作,有专用的去抖动电路,也有专门的去抖动芯片,但通常我们采用软件延时的方法就可以解决抖动问题。


1、单片机中按键消抖程序

1.1  单片机中,比如STM32中,一般的方法(最简单的方法)

软件消抖程序:

if(GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_14)==1)  {  delay_ms(20);//延时20ms再去检测按键值 if(GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_14)==0) // 相当于下降沿{KEY1 = 1; //表示KEY1被按下}}

1.2 比较全面的按键消抖程序及按键状态检测程序

第一步: 初始化全局时间戳的定时器,一般采用SysTick定时器来产生,每ms一次tick即可。

第二步: 初始化按键对应的IO,复用为边沿触发的外部中断。

第三步: 在外部中断函数中添加按键事件处理函数。

代码部分:

typedef struct _Key_t  {  u32 last_time;  enum  {  May_Press,  Release,  }private_state;  enum  {  No_Press,  Short_Press,  Long_Press,  }state; }Key_t;
#define Is_ShortPress_Threshold 1500
 
简单定义一个按键状态的结构体,用于管理每个按键的状态。顺便再定义一个长短按的识别阈值,用于区分按键的长短按。

if(key_state.private_state==Release) {  if(KEY==0)  {  key_state.private_state=May_Press;  key_state.last_time=course_ms();  } } else if(key_state.private_state==May_Press) {  if(KEY==1)  {  if((course_ms()-key_state.last_time>10)&&(course_ms()-key_state.last_time {  key_state.state=Short_Press;  key_state.private_state=Release;  }  else if(course_ms()-key_state.last_time>Is_ShortPress_Threshold)  {  key_state.state=Long_Press;  key_state.private_state=Release;  }  else  key_state.private_state=Release;  } }


以上为需要添加到中断处理函数的按键事件处理函数,算法的核心是一个状态机。在本例中,按键被默认上拉,按下接地。course_ms()为获取全局时间戳的函数。

思路解释如下: 按键状态结构体有一个用于识别的状态位,默认处于Release,也就是释放的状态。一旦按键被按下,中断触发,此时检查是否是Relase状态,如果是就检查按键是否被拉低,如果是,此时进入May_Press状态,也就是可能是按下的,并且记录此时的时间戳,这一步是消抖的关键。当按键被释放,由于是边沿触发,会再次进行处理,此时检查和上一次触发之间的时间戳之差,如果小于10ms我们就认为是抖动,此时不会对按键输出状态进行修改,而是直接将按键状态置回Relase状态,反之检查差值和长短按阈值之间的关系,将state置位为对应的状态。消抖的核心在于记录时间戳,而这只是一个简单的赋值操作,并不耗费时间。

效率上来说,延时消抖花费时间在无意义延时上,而相对较好的定时轮询还是不可避免的在轮询,而现在这种方式完全是中断性质的。唯一多出的开销(全局时间戳)并不是只可以用于按键消抖,另外在HAL库中存在直接获取tick的函数,这样实现就更方便了。经实际测试,消抖效果可以达到其他两种消抖算法的水平。

2、FPGA按键消抖程序

首先,做两个假定,以方便后面的描述:

  • 假定按键的默认状态为0,被按下后为1
  • 假定按键抖动时长小于20ms,也即使用20ms的消抖时间

核心:方案

  • 最容易想到的方案

在按键电平稳定的情况下,当第一次检测到键位电平变化,开始20ms计时,计时时间到后将按键电平更新为当前电平。

  • 或许这才是最容易想的方案

在20ms计时的过程中,有任何的电平变化都立即复位计时

  • 消除按键反应延时抖方案

在有电平变化时立即改变按键输出电平,并开始20ms计时,忽略这其中抖动
测试平台设计(修改代码以仿真的1us代替实际1ms)

  • 无抖动 上升沿抖动5毫秒
  • 下降沿抖动15毫秒
  • 上升和下降沿均抖动19毫秒
  附加测试(可以不通过)
  • 抖动25毫秒

代码

方案1

module debounce(    input wire clk, nrst,    input wire key_in,    output reg key_out); // 20ms parameter// localparam TIME_20MS = 1_000_000; localparam TIME_20MS = 1_000; // just for test // variable reg [20:0] cnt; reg key_cnt;  // debounce time passed, refresh key state always @(posedge clk or negedge nrst) begin if(nrst == 0) key_out <= 0; else if(cnt == TIME_20MS - 1) key_out <= key_in; end
// while in debounce state, count, otherwise 0 always @(posedge clk or negedge nrst) begin if(nrst == 0) cnt <= 0; else if(key_cnt) cnt <= cnt + 1'b1; else cnt <= 0; end
// always @(posedge clk or negedge nrst) begin if(nrst == 0) key_cnt <= 0; else if(key_cnt == 0 && key_in != key_out) key_cnt <= 1; else if(cnt == TIME_20MS - 1) key_cnt <= 0; endendmodule

方案2

module debounce( input wire clk, nrst, input wire key_in, output reg key_out );// localparam TIME_20MS = 1_000_000; localparam TIME_20MS = 1_000; reg key_cnt; reg [20:0] cnt; always @(posedge clk or negedge nrst) begin if(nrst == 0) key_cnt <= 0; else if(cnt == TIME_20MS - 1) key_cnt <= 0; else if(key_cnt == 0 && key_out != key_in) key_cnt <= 1; end
always @(posedge clk or negedge nrst) begin if(nrst == 0) cnt <= 0; else if(key_cnt) begin if(key_out == key_in) cnt <= 0; else cnt <= cnt + 1'b1; end else cnt <= 0; end
always @(posedge clk or negedge nrst) begin if(nrst == 0) key_out <= 0; else if(cnt == TIME_20MS - 1) key_out <= key_in; endendmodule

方案3

module debounce( input wire clk, nrst, input wire key_in, output reg key_out );// localparam TIME_20MS = 1_000_000; localparam TIME_20MS = 1_000; // just for test
reg key_cnt; reg [20:0] cnt; always @(posedge clk or negedge nrst) begin if(nrst == 0) key_cnt <= 0; else if(key_cnt == 0 && key_out != key_in) key_cnt <= 1; else if(cnt == TIME_20MS - 1) key_cnt <= 0; end
always @(posedge clk or negedge nrst) begin if(nrst == 0) cnt <= 0; else if(key_cnt) cnt <= cnt + 1'b1; else cnt <= 0; end
always @(posedge clk or negedge nrst) begin if(nrst == 0) key_out <= 0; else if(key_cnt == 0 && key_out != key_in) key_out <= key_in; endendmodule
测试代码

// 按键消抖测试电路// 时间单位`timescale 1ns/10ps// modulemodule debounce_tb; // time period parameter localparam T = 20; // variable reg clk, nrst; reg key_in; wire key_out; // instantiate debounce uut( .clk (clk ), .nrst (nrst ), .key_in (key_in ), .key_out(key_out) ); // clock initial begin clk = 1; forever #(T/2) clk = ~clk; end
// reset initial begin nrst = 1; @(negedge clk) nrst = 0; @(negedge clk) nrst = 1; end
// key_in initial begin // initial value key_in = 0; // wait reset repeat(3) @(negedge clk); // no bounce // key down key_in = 1; // last 60ms repeat(3000) @(negedge clk); // key up key_in = 0; // wait 50ms repeat(2500) @(negedge clk); // down 5ms, up 15ms // key down, bounce 5ms repeat(251) @(negedge clk) key_in = ~key_in; // last 60ms repeat(3000) @(negedge clk); // key up, bounce 15ms repeat(751) @(negedge clk) key_in = ~key_in; // wait 50ms repeat(2500) @(negedge clk); // down 19ms, up 19ms // key down, bounce 19ms repeat(951) @(negedge clk) key_in = ~key_in; // last 60ms repeat(3000) @(negedge clk); // key up, bounce 19ms repeat(951) @(negedge clk) key_in = ~key_in; // wait 50ms repeat(2500) @(negedge clk); // additional, this situation shoud not ever happen // down 25ms, up 25ms // key down, bounce 25ms repeat(1251) @(negedge clk) key_in = ~key_in; // last 60ms repeat(3000) @(negedge clk); // key up, bounce 25ms repeat(1251) @(negedge clk) key_in = ~key_in; // wait 50ms repeat(2500) @(negedge clk); // stop $stop; endendmodule

放在最后的,并不一定是最不重要的

对于上面的三种方案,我比较喜欢第三种方案,它更贴合实际的按键状态,以上的代码我都做过modelsim仿真,但还没有在实际的项目中验证。在整理准备这个博客的时候,我又想到了一个感觉是更巧妙的方案,具体是这样的:在第三个方案的基础上,因为按键输入有变化的第一时刻,输出就已经改变了,在这种情况下,我可以把计时的时长改为一个很小的值,该值只要比抖动中的最长高低电平变化时间长即可。但想想也没这个必要,且这个抖动的高低电平变化时长我也很难去给它界定一个值。

-END-




推荐阅读



【01】学习STM32的一些经验分享
【02】如何学STM32 —— 十年经验教你如何学习嵌入式系统
【03】STM32单片机必须掌握的八种IO口模式和引脚配置方式
【04】在 STM32 上使用 C++ 指南
【05】工程师实战分享:77条STM32知识汇总



免责声明:整理文章为传播相关技术,版权归原作者所有,如有侵权,请联系删除

嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  • 近期,智能家居领域Matter标准的制定者,全球最具影响力的科技联盟之一,连接标准联盟(Connectivity Standards Alliance,简称CSA)“利好”频出,不仅为智能家居领域的设备制造商们提供了更为快速便捷的Matter认证流程,而且苹果、三星与谷歌等智能家居平台厂商都表示会接纳CSA的Matter认证体系,并计划将其整合至各自的“Works with”项目中。那么,在本轮“利好”背景下,智能家居的设备制造商们该如何捉住机会,“掘金”万亿市场呢?重认证快通道计划,为家居设备
    华普微HOPERF 2025-01-16 10:22 138浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 180浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,与汽车技术领先者法雷奥合作,采用创新的开放系统协议(OSP)技术,旨在改变汽车内饰照明方式,革新汽车行业座舱照明理念。结合艾迈斯欧司朗开创性的OSIRE® E3731i智能LED和法雷奥的动态环境照明系统,两家公司将为车辆内饰设计和功能设立一套全新标准。汽车内饰照明的作用日益凸显,座舱设计的主流趋势应满足终端用户的需求:即易于使用、个性化,并能提供符合用户生活方式的清晰信息。因此,动态环境照明带来了众多新机遇。智能LED的应用已
    艾迈斯欧司朗 2025-01-15 19:00 71浏览
  • 晶台光耦KL817和KL3053在小家电产品(如微波炉等)辅助电源中的广泛应用。具备小功率、高性能、高度集成以及低待机功耗的特点,同时支持宽输入电压范围。▲光耦在实物应用中的产品图其一次侧集成了交流电压过零检测与信号输出功能,该功能产生的过零信号可用于精确控制继电器、可控硅等器件的过零开关动作,从而有效减小开关应力,显著提升器件的使用寿命。通过高度的集成化和先进的控制技术,该电源大幅减少了所需的外围器件数量,不仅降低了系统成本和体积,还进一步增强了整体的可靠性。▲电路示意图该电路的过零检测信号由
    晶台光耦 2025-01-16 10:12 84浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 79浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 133浏览
  • 故障现象 一辆2007款法拉利599 GTB车,搭载6.0 L V12自然吸气发动机(图1),累计行驶里程约为6万km。该车因发动机故障灯异常点亮进厂检修。 图1 发动机的布置 故障诊断接车后试车,发动机怠速轻微抖动,发动机故障灯长亮。用故障检测仪检测,发现发动机控制单元(NCM)中存储有故障代码“P0300 多缸失火”“P0309 气缸9失火”“P0307 气缸7失火”,初步判断发动机存在失火故障。考虑到该车使用年数较长,决定先使用虹科Pico汽车示波器进行相对压缩测试,以
    虹科Pico汽车示波器 2025-01-15 17:30 87浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 85浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 135浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 127浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 128浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 80浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦