NVIDIA大讲堂|什么是卷积神经网络?

原创 英伟达NVIDIA中国 2022-05-12 18:21

卷积神经网络是一种深度学习网络,主要用于识别图像和对其进行分类,以及识别图像中的对象。

么是卷积神经网络?


人工神经网络是一个硬件和/或软件系统,模仿神经元在人类大脑中的运转方式。卷积神经网络 (CNN) 通常会在多个全连接或池化的卷积层中应用多层感知器(对视觉输入内容进行分类的算法)的变体。


CNN 的学习方式与人类相同。人类出生时并不知道猫或鸟长什么样。随着我们长大成熟,我们学到了某些形状和颜色对应某些元素,而这些元素共同构成了一种元素。学习了爪子和喙的样子后,我们就能更好地区分猫和鸟。


神经网络的工作原理基本也是这样。通过处理标记图像的训练集,机器能够学习识别元素,即图像中对象的特征。


CNN 是颇受欢迎的深度学习算法类型之一。卷积是将滤波器应用于输入内容的简单过程,会带来以数值形式表示的激活。通过对图像反复应用同一滤波器,会生成名为特征图的激活图。这表示检测到的特征的位置和强度。


卷积是一种线性运算,需要将一组权重与输入相乘,以生成称为滤波器的二维权重数组。如果调整滤波器以检测输入中的特定特征类型,则在整个输入图像中重复使用该滤波器可以发现图像中任意位置的特征。



例如,一个滤波器用于检测特定形状的曲线,另一个滤波器用于检测垂直线,第三个滤波器用于检测水平线。其他滤波器可以检测颜色、边缘和光线强度。连接多个滤波器的输出,即可以表示与训练数据中的已知元素匹配的复杂形状。


CNN 通常由三层组成:1) 输入层、2) 输出层和 3) 包含多个卷积层的隐藏层,其中隐藏层为池化层、全连接层和标准化层。

第一层通常用于捕捉边缘、颜色、梯度方向和基本几何形状等基本特征。添加层后,此模型会填充高级特征,这些特征会逐渐确定一个大型棕色图块,首先是车辆,然后是汽车,然后是别克。


池化层会逐渐缩小表示的空间的大小,提高计算效率。池化层会单独对每个特征图进行运算。池化层中常用的方法是最大池化,即捕捉数组的最大值,从而减少计算所需的值的数量。堆叠卷积层允许将输入分解为其基本元素。


标准化层会对数据进行正则化处理,以改善神经网络的性能和稳定性。标准化层通过将所有输入都转换为均值为 0 且方差为 1,从而使每个层的输入更便于管理。


全连接层用于将一层中的各个神经元与另一层中的所有神经元相连。



什么选择卷积神经网络?


神经网络有三种基本类型:


  • 多层感知器擅长使用标记输入处理分类预测问题。它们是可应用于各种场景(包括图像识别)的灵活网络。

  • 时间递归神经网络使用一个或多个步长作为输入,并以多个步长作为输出,针对序列预测问题进行了优化。它们擅长解读时间序列数据,但对图像分析无效。

  • 卷积神经网络专为将图像数据映射到输出变量而设计。它们特别擅长发掘二维图像的内部表征,可用于学习位置和尺寸不变的结构。这使得它们特别擅长处理具有空间关系组件的数据。


CNN 已成为许多先进深度学习(例如面部识别、手写识别和文本数字化)方面的计算机视觉应用程序的首选模型。此外,它还可应用于推荐系统。2012 年 CNN 迎来了转折点,当时多伦多大学研究生 Alex Krizhevsky 使用 CNN 模型将分类错误记录从 26% 降低至 15%,在当年的 ImageNet 竞赛中获胜,这一成绩在当时令人震惊。


事实证明,在涉及图像处理的应用场合,CNN 模型能够带来出色结果和超高计算效率。虽然 CNN 模型并不是适合此领域的唯一深度学习模型,但这是大家共同的选择,并且将成为未来持续创新的焦点。


关键用例


CNN 是目前机器用来识别物体的图像处理器。CNN 已成为当今自动驾驶汽车、石油勘探和聚变能研究领域的眼睛。在医学成像方面,它们可以帮助更快速发现疾病并挽救生命。


得益于 CNN 和递归神经网络 (RNN),各种 AI 驱动型机器都具备了像我们眼睛一样的能力。经过在深度神经网络领域数十年的发展以及在处理海量数据的 GPU 高性能计算方面的长足进步,大部分 AI 应用都已成为可能。


卷积神经网络的重要意义


数据科学团队


图像识别应用范围广,是许多数据科学团队必备的核心能力。CNN 是一项成熟的标准,可为数据科学团队提供技能基准,让他们可以学习并掌握这些技能,以满足当前和未来的图像处理需求。


数据工程团队


了解 CNN 处理所需训练数据的工程师可以提前一步满足组织需求。数据集采用规定的格式,并且工程师可以通过大量公开的数据集进行学习。这简化了将深度学习算法投入生产的过程。


助 GPU 加速卷积神经网络


先进的神经网络可能有数百万乃至十亿以上的参数需要通过反向传播进行调整。此外,它们需要大量的训练数据才能实现较高的准确度,这意味着成千上万乃至数百万的输入样本必须同时进行向前和向后传输。由于神经网络由大量相同的神经元构建而成,因此本质上具有高度并行性。这种并行性会自然映射到 GPU,因此相比仅依赖 CPU 的训练,计算速度会大幅提高。


通过深度学习框架,研究人员能轻松创建和探索卷积神经网络 (CNN) 和其他深度神经网络 (DNN),同时达到实验和工业部署所需的较高速度。NVIDIA 深度学习 SDK 可加快 Caffe、CNTK、TensorFlow、Theano 和 Torch 等广泛使用的深度学习框架以及众多其他机器学习应用程序的运行速度。


深度学习框架在 GPU 上的运行速度更快,并可以在单个节点内的多个 GPU 间扩展。为了将框架与 GPU 结合使用以进行卷积神经网络训练和推理过程,NVIDIA 分别提供了 cuDNN 和 TensorRT。cuDNN 和 TensorRT 可大幅优化卷积层、池化层、标准化层和激活层等标准例程的实施。


为快速开发和部署视觉模型,NVIDIA 面向视觉 AI 开发者提供了 DeepStream SDK,同时面向计算机视觉领域提供了 TAO 工具套件,用于创建准确且高效的 AI 模型。


NVIDIA 大讲堂往期精彩内容


NVIDIA 大讲堂 | 什么是人工智能(AI)?

NVIDIA 大讲堂 | 什么是深度学习(Deep Learning)?

NVIDIA 大讲堂 | 什么是机器学习?

NVIDIA 大讲堂 | 什么是 APACHE SPARK?

NVIDIA 大讲堂 | 什么是 BERT ?

NVIDIA 大讲堂 | 什么是计算机视觉?

NVIDIA 大讲堂 | 什么是对话式 AI ?


更多精彩仍在继续... 

敬请关注



扫描下方海报二维码,收下这份 GTC22 精选演讲合集清单,在NVIDIA on-Demand 上点播观看主题演讲精选、全球精选和中国精选!


评论 (0)
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 145浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 121浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 133浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 169浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 163浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 151浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 199浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 129浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 134浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 168浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 153浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦