三个电容值的“神话”

电子森林 2020-03-09 00:00

这是发布在SIJ(信号完整性杂志)2020年1月份的封面文章,作者为大名鼎鼎的信号完整性专家Eric Bogatin。


看很多的设计中,电源的去耦都使用3个不同值的电容10uF、1uF、0.1uF并联在一起使用,为什么?从电路的角度不就是11.1uF么?为啥要放三个?0.1uF几乎遍布所有的电源去耦设计中,为什么是0.1uF?半导体科技发展了几十年,无论是工艺还是材料都有非常大的改变,在遵循电路理论的前提下,是否还要沿用几十年前设定的3电容方式?


这篇文章从基础层面做了非常详细的分析,为鼓励大家学用好英文,没有将文章的内容做中文化的翻译,希望大家能够耐心看完,并理解。

Many designs today include three different value decoupling capacitors, or when using just one capacitor, a small value like 0.1 uF. These recommendations are based on 50-year-old assumptions that do not apply today. It is time to reconsider these out of date, legacy design guidelines.

Myths as Legacy Code

From its inception, the electronics industry has been pulled into the future by the four forces of faster, smaller, cheaper, now. This has spurred the continual advance of revolutionary and evolutionary developments in technology, materials, manufacturing, and design. Sometimes, the design principles we adopt in an earlier generation become “legacy code” in the next generation and no longer apply. What worked for one combination of interconnect technologies may not apply to a new combination. The legacy design guideline becomes a myth and should be re-evaluated.

The Only Constant is Change

Our industry has seen revolutionary advances from tubes, to transistors, to integrated circuits, to systems in packages. We have experienced the revolutionary advances from discrete wiring, to single and dual layer printed circuit boards, to multilayer boards, to HDI technologies. We have seen the revolutionary advances from early through-hole devices such as simple metal can packages to DIPs to large pin grid arrays, into surface mount packages with lead frames to small organic printed circuit substrates to ball grid array to chip scale packages, and to multichip modules. A snapshot in time with four representative technology generations of boards and packages is shown in Figure 1.

Figure. 1 Four snapshots in time. From left to right: tubes and discrete wires, tubes and circuit boards, discrete transistors and circuit boards, and surface mount BGA packages with multilayer circuit boards.

Impact on Design from Technology Generations

The fundamental principles behind how signals interact with interconnects has not changed. They are still based on the 150-year-old Maxwell’s Equations. However, how we implement the design principles and turn them into design guidelines has evolved with each generation of packaging and interconnect technology.

In the early days of tubes using discrete wiring, often, the interconnects were transparent. When interconnects mattered, the first problem to break was usually cross talk due to large loop inductances. Design principles of “shorter is better” and power and ground wires bundled together were popular.

When multi-layer boards were introduced, some of this legacy code continued with routing power and ground as discrete wires rather than using ground planes. The legacy of keeping power and ground bundled close together held back the implementation of ground planes in some early designs.

As clock frequencies rose above 20 MHz, transmission line effects began to dominate, and controlled impedance, routing topologies, and termination strategies became important driving forces in the design of interconnects. The legacy code of “shorter is better” contributed to some reluctance of using daisy chain routing topologies which might have resulted in longer path lengths but lower reflection noise.

When we entered the 1 Gbps regime, losses became important, and we started selecting other materials besides the common epoxy-glass based ones in order to engineer lower loss. When using these lower loss laminates we found that above 5 Gbps the copper losses were higher than expected, and we found smoother copper was better. Above 10 Gbps, we found that the 50-year-old approach of building glass-fiber-reinforced circuit boards contributes to a new problem of glass or fiber weave skew.

With new technologies, we need new design rules. The old rules of high peel-strength, epoxy glass circuit boards are not necessarily the best design guidelines in the era of multi-gigabit interconnects.

Industry Experts Lead the Way

The design guidelines we apply on a daily basis in our electronic products have been developed by the industry leaders. These are the companies with dedicated experts in signal integrity, power integrity, EMC, materials, manufacturing, reliability, and integration, who are introducing products at the bleeding edge. These experts apply fundamental principles to establish design guidelines for the new materials, IC technologies, and interconnect technologies they introduce.

But sometimes, what worked in one generation of technology becomes a myth in the next generation. Because these design rules were established by experts, the rest of the industry is sometimes reluctant to let go of the older design guidelines and continues to use them in the new generation of technology where they may not apply. They become myths entrenched in our toolbox.

If the last design worked following these old design guidelines, it is often believed it was because of the design guidelines, even though it might have been in spite of them. Sometimes the legacy code is a neutral, sometimes it has a downside. Even if it is neutral, if it keeps a better design guideline from being established, it becomes a negative. It becomes a myth ready to be displaced.

A design guideline myth, like using three different capacitors per power pin for decoupling, that detracts from performance in a next-generation design should always be re-evaluated.

High-Frequency Capacitors

The ideal equivalent electrical circuit model of a real capacitor is well described by a simple series RLC circuit when the mounting inductance is larger than about 1 nH. When it is below 1 nH, new effects appear and a transmission line model for the real capacitor is a better match.

The simple RLC model applies to most generations of capacitors. An example of the measured impedance of a real SMT, MLCC capacitor and the simulated impedance of an ideal RLC series circuit is shown in Figure 2.

Figure. 2 An example of the measured impedance (in blue) and phase of a real SMT capacitor and the simulated impedance (in red) of a simple RLC circuit model. The difference in the measured and simulated phase is an indication of ESR behavior in the real capacitor not included in the simple RLC model.

This series RLC circuit model is the simplest model that generally applies across the technology range of electrolytic, tantalum, ceramic, MLCC capacitors, as either through-hole or surface mount. This is only a first-order model and many real capacitors can be matched much better with second-order models. But this first model offers insight on the role of these three important terms.

The ideal C corresponds to the impedance behavior at low frequency. The R is often referred to as the equivalent series resistance (ESR). It is due to the real capacitor’s leads, the metallization of the plates, and, to a smaller extent, the other loss mechanisms in the capacitor. The L is referred to as the equivalent series inductance (ESL). It is primarily due to the internal structure of the capacitor and its circuit board power and ground paths to the IC pins to which it connects.

In the days of through-hole capacitors, starting more than 50 years ago, two commonly used capacitor technologies were electrolytic and ceramic disk. Examples of these are shown in Figure 3.

Figure. 3 Examples of electrolytic and ceramic disc capacitors. The smaller physical size capacitors have less capacitance, smaller ESL, and larger ESR.

In both electrolytic capacitor and ceramic disc capacitor technology, there is a direct connection between the amount of capacitance that can be engineered in a capacitor and its physical size and lead length. A larger value capacitance means a larger physical size capacitor.

Because the ESL also depends on the physical size of the capacitor and its lead length, larger value capacitors also have larger ESL. For example, a 47 uF electrolytic capacitor might have as much as 30 nH of ESL, while a small 0.1 uF disc capacitor might have an ESL as low as 7 nH.

Even the ESR varies with capacitor technology and size. An electrolytic capacitor might have an ESR on the order of 0.1 to 5Ω. Smaller size capacitors generally have higher ESR. A ceramic disc capacitor can have an ESR on the order of 0.1 to 1Ω.

This connection between capacitance value and ESL dramatically affects the impedance profile of a large and a small value capacitor. At low frequency, the impedance of a real capacitor is about its capacitance. At high frequency, the impedance of a real capacitor is about its lead inductance. Figure 4 shows an example of three different capacitors with three different impedance profiles. The component values of their first order model might be:

Figure. 4 The simulated impedance profile of these three capacitors. The smallest value provides the low impedance at high-frequency.

With through-hole capacitors having leads, it generally is correct that smaller value capacitors are smaller size and can be mounted with lower loop inductance. This means they will have a lower impedance at higher frequency. When looking for a through-hole capacitor with low impedance at high frequency, choose a small value and small size capacitor.

This is why small value capacitors are often referred to as “high-frequency” capacitors. Due to their shorter leads, if mounted to the circuit board with low loop inductance, they offer the lowest impedance at high frequency.

If we want the lowest impedance at low frequency as well as the lowest impedance at high frequency, a common practice has been to add two or three capacitors in parallel. A large value capacitor provides the low impedance at low frequency and a small value capacitor, with its lower ESL, provides the low impedance at high frequency. The parallel combination leverages the best of both configurations.

MLCC Capacitors and the Myth of the High-Frequency Capacitor

When we switch to capacitors based on MLCC surface mount technology, the capacitor properties are very different from leaded capacitors. Figure 5 shows examples of 1206 style MLCC capacitors with capacitance values corresponding to the same capacitance in the corresponding ceramic disc capacitors.

Figure. 5 MLCC capacitors in 1206 packages (top) and corresponding value ceramic disc capacitors.

Often, a wide range of capacitance values can be obtained in exactly the same body size. It is just as easy to have 10 uF in an 0402 as a 0.01 uF. This means that the ESL of an MLCC capacitor, if optimally integrated into a board, will be independent of its capacitance value.

In fact, using low-loop inductance designs, the ESL of an MLCC can be engineered to be less than 1 nH, even on a two-layer circuit board. An example of the measured impedance profile of a 1 uF MLCC capacitor on a two-layer 063 mil thick board with 0.620 nH ESL is shown in Figure 6.

Figure. 6 An example of the measured impedance profile of a 1 uF MLCC capacitor on a circuit board with 0.620 nH of ESL. This also shows the need for a 2nd order model when the mounting inductance is less than 1 nH. Measurement courtesy of Picotest .

A 10 and 0.1 uF MLCC capacitor will have exactly the same high frequency impedance. The smaller capacitance value capacitor is no longer a “high-frequency” capacitor. In fact, a 10 uF MLCC capacitor will also be a “high-frequency” capacitor.

If low ESL is of value in a design, MLCC capacitors should always be used. Even a 10 uF MLCC capacitor can have less than 10 percent the ESL and the impedance of a “high-frequency” ceramic disc capacitor.

In older products, when through-hole capacitors were used, smaller value capacitance had lower ESL and lower impedance at higher frequency. When there was room on the board for only one capacitor on a power pin and the transient current from that pin was small, a single “high-frequency” capacitor with low inductance was specified. This is a low-value capacitance, typically 0.1 uF.

When there was room for three capacitors for a pin, a range of three capacitor values was typically specified. This provided the lower impedance at high frequency and lower impedance at low frequency than just one value capacitor. Figure 7 is an example of a typical schematic showing these common specifications.

Figure. 7 An example of a typical circuit showing a decoupling network with three different capacitor values and a small value single capacitor.

However, this schematic example was taken not from an old design using through-hole parts and through-hole capacitors but instead from a 120 MHz leading edge Cortex M4 microcontroller board, designed and assembled all with MLCC capacitors. The myth of the high- frequency capacitor has carried over into this design as it has in many others that still specify a small value capacitor used as a single capacitor and three different values for higher current pins.

The myth of the high-frequency capacitor and the use of three different capacitor values is legacy code that is still present in many modern designs.

Which is Better?

So, which is better: three capacitors a decade apart in value or three capacitors of the same value?

Unfortunately, only a system-level analysis with accurate models of all the elements will have a chance of answering this question.

If the recommendation in the spec is to use three different value capacitors, chances are good the engineer who wrote the spec never did any analysis and is using a 50-year-old design guideline based on the myth of the high-frequency capacitor. The rationale behind this recommendation disappeared with the introduction of the MLCC capacitor 20 years ago. Be suspect of the PDN design.

In this case, it probably does not matter what you use. Your product may work in spite of the capacitor values, but probably not because of them.

When three different value capacitors with the same ESL are combined in parallel, two parallel resonance peaks are generated between their self-resonant frequencies. The peak impedance values are related to capacitance and inductance of the adjacent capacitors, and the ESR of the capacitors.

Figure 8 shows the simulated impedance profile of three different combinations of three capacitors each. One combination is the recommendation for 10, 1, and 0.1 uF implemented in through-hole technology. The second is the same combination implemented in MLCC capacitor technology. The third combination is all the same 10 uF MLCC capacitors. The ESL of the MLCC capacitors is 1 nH.

Figure. 8 The simulated impedance profiles of three different and three identical MLCC capacitors.

Three capacitor values all the same large value may provide lower impedance across the spectrum than three different value capacitors (and without the parallel resonant peaks at intermediate frequencies), but this does not mean it is a more robust solution.

The last product might have worked, but you may have no idea how robust the design is or whether some of the untraceable, non-reproducible failures might have been due to excessive switching noise with just the right convergence of data patterns that saw a marginally high impedance at a parallel resonance.

Do not be lulled into thinking that three different values of capacitors is a robust strategy, or that three capacitors all the same value is more robust. Without a system level analysis, they both may be equally acceptable, equally marginal, or fail from the same faults.

“Test-In” Quality

If you are not going to do your own system level analysis, plan to implement a thorough test plan so that you can find the weak links in your PDN and “test-in the quality.”

Part of a thorough test plan is to design for test in the PDN. The better you can characterize noise (not just at the board level but on the pads of the die) using high bandwidth sense lines, for example, the better you will be able to compare one decoupling strategy to another. Figure 9 is an example of the measured voltage noise on the die power rail and on the board level while I/Os switch. The on-die voltage noise is 600 mV peak-to-peak on a 5 V rail. The board-level voltage noise is only 75 mV peak-to-peak.

Figure. 9 Measured voltage noise on the same power rail on the die measured through a sense line, and on the board, both scales the same 200 mV/div.

Regardless of the application, lower mounting loop inductance is always of value. This is why the MLCC decoupling capacitors should always be the second components placed on the board, so they can be routed with the lowest mounting inductance practical.

If only one capacitor is specified on a pin, as is common practice for many low-current applications, then always use the highest capacitance allowed for the smallest body size practical, at the acceptable voltage rating. Without a system-level analysis, this is still no guarantee of a robust product, and a thorough test plan is essential.

Design-In Quality: The Right Decoupling Capacitor Strategy

The use of three different values of decoupling capacitors is based on the outdated assumption that small value capacitors are “high-frequency” capacitors. In our era of MLCC capacitors, where this assumption does not apply, what is a better recommendation? Unfortunately, the answer is, “it depends.”

However, there are some general design guidelines that will apply to most systems.

The goal in any PDN is to provide a DC voltage to those components that need it, with an acceptable level of noise for the application. MLCC capacitors used for decoupling are only a part of a good PDN strategy.

One of the underlying principles in the design of a PDN is to keep the impedance profile, as seen by the pads of the IC, a flat impedance and at a value that is acceptably low. This means reduce the parallel resonance peaks generally by adding more capacitance, reduce the loop inductances, and sculpt the impedance profile either by using different capacitor values or through controlled ESR (which will reduce the q-factor of peaks).

This sometimes translates to enough bulk capacitance so that the VRM-bulk capacitor peak is reduced. At the high-frequency end, a flat impedance profile at the board level will help dampen the Bandini Mountain of the on-die capacitance and package lead inductance parallel resonance peak.

Selecting capacitor values requires a system level analysis including the VRM at one end and the consuming elements at the other. While you engineer all the mounting features to reduce the loop inductance of the capacitors as much as practical, it is always valuable to use 3D simulators and measurement-based modeling tools to develop accurate models for the PDN elements to simulate the entire system. An accurate model of the VRM and the on-die capacitance of each rail and package lead inductances are part of the overall analysis to engineer a robust design.

When there is considerable on-package decoupling, the low frequency properties of the bulk capacitors and MLCC capacitors are more important. When the on-die capacitance and package lead inductance dominate, creating a large Bandini Mountain from their parallel resonance, damping from a flat impedance profile created by the board level MLCC capacitors is important.

Unfortunately, no combination of just three capacitor values other than using controlled ESR capacitors will provide any damping at the board level for the Bandini Mountain.

This is only a glimpse into some of the design driving forces that really go into the optimized, cost-effective decoupling strategy. The first step is to identify the problem. The second step is to identify the root cause of the problem, and the third step is to determine the overall PDN design strategy which provides acceptable noise, of which the optimized decoupling strategy is only part.

When there are more than six orders of magnitude difference in the target impedance of systems, ranging from more than 10Ω in many IoT applications, to less than 10 uOhms in large network processor-based products, there is not one cost-effective strategy, but many.

But that is a story for a different chapter.

Summary

The origin of the use of three different capacitor values is based on the use of through-hole, leaded capacitors. Smaller capacitance value capacitors generally will have lower ESL and lower impedance at high-frequency. With through hole capacitors, using three different capacitor values has a performance advantage.

But with MLCC capacitors, in use for more than 20 years, these old, legacy design guidelines no longer apply.

When just one or three capacitors are specified for decoupling, it is probably because no analysis of the design was done. Instead, what worked in the last design is what is recommended in the next design. The design works, in spite of using three different values, and chances are, would work equally as well using all three the same value. In this case, the robustness of your design is “tested in” instead of “designed in.”

The best approach is to always do your own analysis, including the rest of the power distribution system and, when available, accurate models of all your components, as they are mounting into your system.

If your design specifies three different capacitor values, you may be following a legacy design guideline that has been carried forward for more than 20 years. It is probably time to reconsider this design guideline for your next design and do your own analysis.n


电子森林 讲述电子工程师需要掌握的重要技能: PCB设计、FPGA应用、模拟信号链路、电源管理等等;不断刷新的行业新技术 - 树莓派、ESP32、Arduino等开源系统;随时代演进的热点应用 - 物联网、无人驾驶、人工智能....
评论 (0)
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 239浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 229浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 178浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 149浏览
  •        在“软件定义汽车”的时代浪潮下,车载软件的重要性日益凸显,软件在整车成本中的比重逐步攀升,已成为汽车智能化、网联化、电动化发展的核心驱动力。车载软件的质量直接关系到车辆的安全性、可靠性以及用户体验,因此,构建一套科学、严谨、高效的车载软件研发流程,确保软件质量的稳定性和可控性,已成为行业共识和迫切需求。       作为汽车电子系统领域的杰出企业,经纬恒润深刻理解车载软件研发的复杂性和挑战性,致力于为O
    经纬恒润 2025-03-31 16:48 104浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 180浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 153浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 99浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 222浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 211浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 226浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 167浏览
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 157浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 93浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦