最大限度地提高示波器测量精度

加油射频工程师 2022-05-11 12:40

提高示波器的精度并不难,但需要注重细节。本文将探讨多种改善示波器测量的方法。

采用多个栅格显示区来维持动态范围不变

示波器(4通道)的一种常见用法是牺牲示波器四分之一的动态范围,衰减各信号的摆幅以使这几个信号可以同时显示在一个共用屏幕上(如图1所示)。

图1:衰减几路信号的摆幅以显示在一个共用屏幕上,就意味着牺牲了动态范围。

一般来说,数字示波器都被设计成将其模数转换器(ADC)的完整范围映射到全屏或几乎全屏的显示器栅格上。如果衰减来自每个通道的信号以使之显示在全屏的四分之一栅格区(两格)内,就等于牺牲了两个数字位的动态范围。另外,为了将信号迹线显示在特定的两格内,还必须增加偏置量。偏置误差又为读数增加了另外一个误差源。

为解决上述问题,应该使用多栅(分区)显示器,并将每个通道信号显示在独立栅格中。这样,既无需对信号进行衰减,也无需电压偏置,即可以全动态范围显示多个通道信号(如图2所示)。图中,一个正交显示器显示具有全动态范围的四个多栅格区域。

与图1中每个图形的迹线进行比较,会注意到图2中每个信号都具有更低的噪声。利用更大的垂直刻度读数采集信号来衰减输入信号,可以减少信号的垂直位移,但不会减少示波器通道中的内部噪声。

图2:一个四栅(分区)显示器(每个通道对应一个分区显示器)显示四路信号的全动态范围波形。

这种方法会造成较低的信噪比,可以查看通道1上的信号叠加比较而得知(如图3所示)。

图3:将利用50mV/div(绿色迹线)采集的信号与利用200mV/div(黄色迹线)采集的信号叠加在一起。发现黄色迹线更宽、轮廓不分明,且更嘈杂。

将以200mV/div精度采集的信号衰减四倍后,以50MV/div显示时,就会呈现出更大的噪声和更低的分辨率。而未衰减的正弦波迹线(绿色)上的扰动较小,原因是动态范围得到了改善。

显示不仅表现出这种幅度分辨率损失,还会影响其他测量。峰峰值测量对噪声非常敏感。注意,衰减信号的峰峰值读数读取的噪声电平更高,比用50mV/div采集的结果要高44mV。不过,其均方根水平非常接近,这是因为均方根过程对信号进行了整合,从而降低了测量的噪声水平。

被衰减信号的噪声大还会影响其频率测量。注意,若用标准测量偏差来表示,被衰减信号的测量不确定性要高两倍。

这就是说,不要为了用单栅显示器而衰减信号——而应采用多栅显示器,显示各路全动态范围的信号。

精确的光标读数

示波器通常提供三种测量工具:屏幕格线、光标和测量参数。光标是可以在显示波形上移动的标记,可以及时记录光标的位置以及与光标相交处的波形幅度。光标测量精度的高低,取决于能否将光标精确放置在所期望的波形点位上。

通过几个简单的技巧可以提高放置光标的精确性。首先,在放置光标时停止信号采集。每次采集的波形都不同,波形保持稳定时,放置光标会容易很多。其次,也是更重要的,对一路/或多路迹线进行放大。在放大区域中的光标跟踪,或更大的显示区域将使精准放置光标变得更加容易(如图4所示)。

图4:放大迹线中的光标跟踪。使用放大迹线显示波形的扩展视图,以便更准确地放置光标。

放大视图中的扩展显示不仅可以更容易地查看波形细节,而且当光标进入放大区域时,光标移动的变化率也会降低。较慢的变化率可以实现放置光标时的良好控制。

在上面的示例中,光标需被置于正弦波的零交叉处。显示两个放大视图,每个视图显示一个交叉点。手动移动光标并监测通道注释框中的光标幅度,当光标幅度读数为0V时,即可落定光标。

请注意,利用测量参数P1测得的正弦波平均周期为99.9999ns,而用光标测得的值DX=100.04ns。测量参数具有更高的分辨率,因为它确定周期时用的是双插值操作。通常,测量参数提供的测量结果最准确。然而,光标提供了一个更方便的测量工具,毕竟并非每次测量都有一个测量参数。

选择性参数测量

图5显示了一个波形,在没有任何帮助的情况下,很难制定其标准测量参数。该波形是I2C串行接口的门控时钟波形。图中的两个波形完全相同,而频率参数将用来测量不同测量配置时的时钟频率。

参数P1测量上方迹线的频率。观测了162个周期,测得的频率分布在68.518kHz到100.298kHz之间。这并不奇怪,因为波形的时序并不统一。P1的读数是波形中最后一个采集周期的频率,显示频率为73.281kHz。查看M2波形(绿色迹线)中的最后一个周期,可以看到它比其他大多数周期都长,这说明其频率也较低。

图5:采用测量门选择性地测量门控时钟频率。

参数设置中有几种技术可用于解决这种问题。第一个是门控,顾名思义,它仅允许在用户定位的门之间进行测量。有些示波器使用测量光标来选通参数测量。本例采用的Teledyne LeCroy示波器则采用了一组单独的门标记,在下方(黄色)迹线上显示为虚线。门被设置在第一个时钟附近,并测量八个完整周期的频率。在这种情况下,频率参数的读数范围为99.914至100.109kHz。测量门成功地将测量范围限制在时钟范围内,并忽略了间隙。门控使测量参数更加灵活。

第二个测量工具为接受准则。该工具允许参数测量所有值,但仅显示用户输入范围内的值,如图6所示:

图6:使用参数接受准则仅展示99到101kHz之间的频率值。

在参数P2中,接受准则被设置为仅显示在99到101kHz之间的频率。在该范围内的测量次数仅为144次,而显示了所有测量值的P1中列出的次数为162次。频率参数从第一个上升沿开始测量,因此测量的时钟波形中有18个间隙,等于总测量值与接受值之间的差值。

跟踪是一个数学函数,某些示波器中具有该功能,该功能可绘制参数值与时间的关系图。在本例中,该功能是很有用的,可以查看波形中哪些结果与不同波形事件相关。图7显示了对频率参数的跟踪。

图7:基于所测频率参数的跟踪(F2)和直方图(F1)函数示例。

迹线F2(红色)为频率参数跟踪结果。其垂直标度以赫兹为单位,它描绘出频率单位与时间的关系。该迹线与I2C时钟源波形在时间上同步。所示的脉冲波形最大值为100.3kHz,基值为68.52kHz。对应于源波形的开始和结束,每次跟踪结束的基值都会稍大一些,但最大值是一致的。跟踪可以显示出频率变化发生的位置。请注意,相对于70kHz及以下部分,100kHz段更宽,说明100kHz组中有更多的时钟脉冲。

迹线F1是频率参数图形化表示的直方图,显示在测量数据值的小范围内相对于数据值绘制的出现次数。它是对测量值发生概率的估计。直方图中使用的数据值可以是采集的样本幅度、定时值或测量参数。上文提到的P1频率测量直方图在图7中显示为迹线F1(黄色)。

直方图位于底部。水平轴为测量值,本例中为频率。纵轴是在较小区间(bin)内的测量值数量。Bin的大小用户可选择。在本例中,水平轴被分为1000个bin。因此,对于大约100kHz的范围,bin的大小约为100Hz。直方图显示出两个明显的峰值和两个小很多的峰值。最大峰值在100kHz处,代表时钟在100kHz bin中的峰值计数为34,其相邻bin中的计数较小,总计数为144。最左边的一个位于68.6kHz处,这是包含间隙的时钟频率。两个较小的峰值也是间隙频率,频率值约为72-73kHz,与时钟信号任一端的参数测量相关。

直方图和跟踪结果(大部分读数约为100kHz)提供了在参数测量中选择和设置接受限值所需的信息。低于100kHz的值与时钟突发中的间隙相关,应从时钟频率的测量中剔除。

跟踪和直方图功能为示波器测量提供了更深刻的洞察力,显示出测量值的原始位置以及这些值如何分布。

结论

本文讨论了几种改善示波器测量的技术,包括最大化显示分辨率、光标放置和测量参数。文中采用的示波器为Teledyne LeCroy Lab Master,其他示波器也可能有类似的功能。跟踪和直方图常与抖动测量工具相关。


评论 (0)
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 268浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 417浏览
  • 文/Leon编辑/cc孙聪颖‍《中国家族企业传承研究报告》显示,超四成“企二代” 明确表达接班意愿,展现出对家族企业延续发展的主动担当。中国研究数据服务平台(CNRDS)提供的精准数据进一步佐证:截至 2022 年,已有至少 280 家上市家族企业完成权杖交接,其中八成新任掌门人为创始人之子,凸显家族企业代际传承中 “子承父业” 的主流模式。然而,对于“企二代” 而言,接棒掌舵绝非易事。在瞬息万变的商业环境中,他们既要在白热化的市场竞争中开拓创新、引领企业突破发展瓶颈,又需应对来自父辈管理层的经
    华尔街科技眼 2025-05-06 18:17 27浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 284浏览
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 99浏览
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 63浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 520浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 273浏览
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 111浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 346浏览
  • 在过去的很长一段时间里,外卖市场呈现出美团和饿了么双寡头垄断的局面。美团凭借先发优势、强大的地推团队以及精细化的运营策略,在市场份额上长期占据领先地位。数据显示,截至2024年上半年,美团外卖以68.2%的市场份额领跑外卖行业,成为当之无愧的行业老大。其业务广泛覆盖,从一线城市的繁华商圈到二三线城市的大街小巷,几乎无处不在,为无数消费者提供便捷的外卖服务。饿了么作为阿里本地生活服务的重要一环,依托阿里强大的资金和技术支持,也在市场中站稳脚跟,以25.4%的份额位居第二。尽管市场份额上与美团有一定
    用户1742991715177 2025-05-06 19:43 63浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 185浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦