重新理解一波设备驱动|Linux驱动

一口Linux 2022-05-09 11:50

哈喽,我是老吴。

非常怀念写文章的感觉。

昨晚复习了一些 Linux 驱动的基础知识,给大家分享一下吧。

先说结论:

多年来,我接触到的 Linux 驱动教程大多都是从 0 编写,这样对初学者而言最大的好处,就是可以接触到比较多的底层原理。

但是在真正的工作场景里,其实是应该尽量避免从 0 构建自己的设备驱动的。

更好的做法是在高度模块化的驱动框架里添加自己的设备驱动。

这样做的好处是最大程度地复用内核现有的代码,同时获得极大的弹性和可维护性,并且为应用程序提供出统一的访问接口。

下面详细地说说。

什么是设备驱动?

设备驱动程序 (device driver) 是对硬件的抽象:

提供基础框架来编写和运行设备驱动程序是操作系统内核责任的一部分。

尽管可以在用户空间中运行设备驱动程序(通过一些内核接口,如 UIO 或 I2CDEV),更常见的情况是让它们在内核空间中运行。


以字符设备驱动为例:

字符设备 (char device) 是一种最常见的硬件抽象。

/dev 目录下的设备节点文件就是内核导出给用户空间的访问设备驱动的接口。

设备节点文件中有三个基本信息:

  • Type,用于标识是 block 还是 char device;

  • Major number,用于标志是那一类 char deivce;

  • Minor number,用于标志是哪一个 char device;


编写字符设备驱动的流程:

1、分配设备号,这通过 register_chrdev_region() 或 alloc_chrdev_region() 来完成;

2、实现文件操作(open、read、write、ioctl)等。

3、使用 cdev_init() 和 cdev_add() 向内核中注册字符设备。

以 LED 字符设备驱动为例


如果按照从 0 构建的思路编写驱动的话,伪代码如下

硬件访问相关:

static struct {
 dev_t devnum;
 struct cdev cdev;
 unsigned int led_status;
 void __iomem *regbase;
} drvled_data;

static void drvled_setled(unsigned int status)
{
 u32 val;

 /* set value */
 val = readl(drvled_data.regbase + GPIO1_REG_DATA);
 if (status == LED_ON)
  val |= GPIO_BIT;
 else if (status == LED_OFF)
  val &= ~GPIO_BIT;
 writel(val, drvled_data.regbase + GPIO1_REG_DATA);

 /* update status */
 drvled_data.led_status = status;
}

static void drvled_setdirection(void)
{
 ...
}

文件操作相关:

static ssize_t drvled_read(struct file *file, char __user *buf,
      size_t count, loff_t *ppos)

{
 ...
}

static ssize_t drvled_write(struct file *file, const char __user *buf,
       size_t count, loff_t *ppos)

{
 char kbuf = 0;

 if (copy_from_user(&kbuf, buf, 1))
  return -EFAULT;

 if (kbuf == '1') {
  drvled_setled(LED_ON);
  pr_info("LED ON!\n");
 } else if (kbuf == '0') {
  drvled_setled(LED_OFF);
  pr_info("LED OFF!\n");
 }

 return count;
}

static const struct file_operations drvled_fops = {
 .owner = THIS_MODULE,
 .write = drvled_write,
 .read = drvled_read,
};

注册和卸载字符设备相关:

static int __init drvled_init(void)
{
 int result = 0;

 if (!request_mem_region(GPIO1_BASE, GPIO1_SIZE, DRIVER_NAME)) {
  pr_err("%s: Error requesting I/O!\n", DRIVER_NAME);
  result = -EBUSY;
  goto ret_err_request_mem_region;
 }

 drvled_data.regbase = ioremap(GPIO1_BASE, GPIO1_SIZE);
 if (!drvled_data.regbase) {
  pr_err("%s: Error mapping I/O!\n", DRIVER_NAME);
  result = -ENOMEM;
  goto err_ioremap;
 }

 result = alloc_chrdev_region(&drvled_data.devnum, 01, DRIVER_NAME);
 if (result) {
  pr_err("%s: Failed to allocate device number!\n", DRIVER_NAME);
  goto ret_err_alloc_chrdev_region;
 }

 cdev_init(&drvled_data.cdev, &drvled_fops);

 result = cdev_add(&drvled_data.cdev, drvled_data.devnum, 1);
 if (result) {
  pr_err("%s: Char device registration failed!\n", DRIVER_NAME);
  goto ret_err_cdev_add;
 }

 drvled_setdirection();

 drvled_setled(LED_OFF);

 pr_info("%s: initialized.\n", DRIVER_NAME);
 goto ret_ok;

ret_err_cdev_add:
 unregister_chrdev_region(drvled_data.devnum, 1);
ret_err_alloc_chrdev_region:
 iounmap(drvled_data.regbase);
err_ioremap:
 release_mem_region(GPIO1_BASE, GPIO1_SIZE);
ret_err_request_mem_region:
ret_ok:
 return result;
}

static void __exit drvled_exit(void)
{
    ...
}

module_init(drvled_init);
module_exit(drvled_exit);

运行效果:

$ install ledrv.ko
$ ls /dev/led
# 灯亮
echo 1 >/dev/led
# 灯灭
echo 1 >/dev/led 

三个问题

单从功能的角度看,上面的程序完全满足控制一个 LED 的需求。

但是,它不是一个好的驱动,这里有 3 个问题。


问题 1:

它创建的接口是 /dev/led,这不是一个通用接口,会增加上层开发人员的学习成本。

解决这个问题需要在 LED char driver 上再添加一层 LED framework,LED framework 负责给用户空间提供标准化的访问接口,同时用于添加可复用的逻辑功能。

基本上各种设备驱动都有自己的 framework,例如 input, IIO, ALSA, V2L2, RTC, watchdog 等。

使用这些 framework 驱动工程师不用考虑提供给用户空间的接口,应用开发人员也只需要学习一次标准的硬件访问接口接口。


问题 2:

它只是控制 1 个 gpio,但是却申请使用了 2 个寄存器,这 2 个寄存器负责控制芯片的 8 个 gpio。这意味着其他 7 个 gpio 再也没法被其他驱动申请使用。

解决这个问题需要引入一个 gpio 的管理者:gpiolib。gpiolib 负责统一管理和分配 gpio 资源。


问题 3:

它包含了硬件信息。如果我们想控制另外一个 gpio或者多个 gpio,就得改动源码,代码维护的工作量极大。

解决这个问题我们需要将硬件信息从代码中抽取出来,具体的就是引入总线、设备、驱动模型。

更好的 LED 驱动

我们用上面的思路,写一个更合理的 LED 驱动。

引入 LED framework:

1、初始化 led_classdev 结构体。

2、提供一个回调函数来改变状态 LED 的。

3、使用 led_classdev_register() 在想 LED framework 注册驱动程序。


引入 gpiolib:

内核管理 gpio 的思路是典型的 producer/consumer 模型。

GPIO controller driver 是 producer,LED driver 是 consumer。

下面是几个常用的 gpiolib api,它们的作用一目了然:

#include 
#include 
struct gpio_desc *gpiod_get(struct device *dev, const char *con_id,enum gpiod_flags flags);

void gpiod_put(struct gpio_desc *desc);

int gpiod_direction_input(struct gpio_desc *desc);

int gpiod_direction_output(struct gpio_desc *desc, int value);

void gpiod_set_value(struct gpio_desc *desc, int value);

int gpiod_get_value(const struct gpio_desc *desc);


引入总线、设备、驱动模型 :

该模型包含 4 部分。

Bus core: 对硬件总线的抽象,不同总线有不同的 Bus core,例如 USB core, SPI core, I2C core, PCI core ,在内核中由 bus_type 结构表示。

Bus adapters: 总线控制器驱动程序,在内核中由 device_driver 结构体表示。

Bus drivers: 负责管理连接到总线的设备的驱动程序,在内核中由 device_driver 结构体表示。

Bus devices: 连接到总线的设备,在内核中由结构 device 表示。

内核虚拟了一条叫 Platform 的总线,用于适配 LED 这种不属于任何总线的设备。

看下改造后的代码:

设备信息:

LED {
<&gpio1 9>
}

硬件控制:

tatic struct drvled_data_st *drvled_data;

static void drvled_setled(unsigned int status)
{
 // 控制 gpio
 if (status == LED_ON)
  gpiod_set_value(drvled_data->desc, 1);
 else
  gpiod_set_value(drvled_data->desc, 0);
}

static void drvled_change_state(struct led_classdev *led_cdev,
    enum led_brightness brightness)

{
 if (brightness)
  drvled_setled(LED_ON);
 else
  drvled_setled(LED_OFF);
}

向 LED framework 注册:

static int drvled_probe(struct platform_device *pdev)
{
 struct device_node *np = pdev->dev.of_node;
 struct device_node *child = NULL;
 int result, gpio;

 child = of_get_next_child(np, NULL);

 drvled_data = devm_kzalloc(&pdev->dev, sizeof(*drvled_data),
       GFP_KERNEL);
 if (!drvled_data)
  return -ENOMEM;

 // 从设备数中获得硬件信息
 gpio = of_get_gpio(child, 0);

 result = devm_gpio_request(&pdev->dev, gpio, pdev->name);
 if (result) {
  dev_err(&pdev->dev, "Error requesting GPIO\n");
  return result;
 }

 drvled_data->desc = gpio_to_desc(gpio);

 drvled_data->led_cdev.name = of_get_property(child, "label"NULL);
 drvled_data->led_cdev.brightness_set = drvled_change_state;

 // 注册进 LED framework
 result = devm_led_classdev_register(&pdev->dev, &drvled_data->led_cdev);
 if (result) {
  dev_err(&pdev->dev, "Error registering led\n");
  return result;
 }

 gpiod_direction_output(drvled_data->desc, 0);

 dev_info(&pdev->dev, "initialized.\n");

 return 0;
}

static int drvled_remove(struct platform_device *pdev)
{
 dev_info(&pdev->dev, "exiting.\n");

 return 0;
}

static const struct of_device_id of_drvled_match[] = {
 { .compatible = "labworks,drvled" },
 {},
};

static struct platform_driver drvled_driver = {
 .driver = {
  .name = "drvleds",
  .owner = THIS_MODULE,
  .of_match_table = of_drvled_match,
 },
 .probe  = drvled_probe,
 .remove  = drvled_remove,
};

module_platform_driver(drvled_driver);


改造后,应用总是通过下面这种标准的接口访问 LED:

# 灯亮
echo 1 > /sys/class/leds//brightness

# 灯灭
echo 0 > /sys/class/leds//brightness

并且有大量的 trigger 可供使用,例如让 LED 呈心跳状态的 heartbeat trigger:

echo heartbeat > /sys/class/leds//trigger


假设这时你想改用 gpio expander 芯片来控制 LED:

只需要添加这个 gpio expander 的驱动代码,并且修改设备树即可,其他部分完全不需要改动:

gpioexp {
I2C0, 0x10
}
LED {
<&gpioexp 3>
}

到此,你是否更清楚如何为 Linux 添加设备驱动了呢?


—— The End ——

推荐阅读:

专辑 | Linux 系统编程

专辑 | Linux 驱动开发

专辑 | Linux 内核品读

专辑 | 每天一点 C

专辑 | 开源软件

专辑 | Qt 入门

一口Linux 写点代码,写点人生!
评论
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 103浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 183浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 149浏览
  • 在电子工程领域,高速PCB设计是一项极具挑战性和重要性的工作。随着集成电路的迅猛发展,电路系统的复杂度和运行速度不断提升,对PCB设计的要求也越来越高。在这样的背景下,我有幸阅读了田学军老师所著的《高速PCB设计经验规则应用实践》一书,深感受益匪浅。以下是我从本书中学习到的新知识和经验分享,重点涵盖特殊应用电路的PCB设计、高速PCB设计经验等方面。一、高速PCB设计的基础知识回顾与深化 在阅读本书之前,我对高速PCB设计的基础知识已有一定的了解,但通过阅读,我对这些知识的认识得到了进一步的深
    金玉其中 2024-12-05 10:01 97浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 103浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 118浏览
  • CS5466AUUSB-C  (2lanes)to HDMI2.1 8K@30HZ(4K@144) +PD3.1  CS5563DP  (4lanes) to HDMI2.1 10k@60Hz CS5565USB-C  (4lanes) to HDMI2.1 10k@60Hz CS5569USB-C (4lanes) to HDMI2.1 10k@60Hz +PD3.1CS5228ANDP++ to HDMI(4K
    QQ1540182856 2024-12-05 15:56 20浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 148浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 116浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 157浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 131浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦