一文了解LinuxKernel中密码学算法的设计与应用

原创 Linux阅码场 2022-05-09 08:00

阅码场Ftrace公开课火热报名中:Ftrace公开课:学优化,学内核(限50人)。课程报名累计30+,课程报名即将截止,报名咨询客服(小月微信:linuxer2016)。



作者简介:


baron (csdn:代码改变世界ctw),九年手机安全/SOC底层安全开发经验。擅长trustzone/tee安全产品的设计和开发。



说明:
在默认情况下,本文讲述的都是ARMV8-aarch64架构,linux kernel 5.14


思考:

1、Linux Kernel中支持哪些密码学算法?分别都是怎么实现的?哪些是C语言实现?哪些是Neon指令实现?哪些是ARM Cryptography Extension硬件实现?这些不同的实现方式,他们之间的关系是怎样的?并列关系?多选一?多选多?

2、应用程序的密码学算法一般又是怎样实现的?应用程序的密码学算法实现,是否依赖Kernel底层的密码学算法?

3、应用程序是如何调用到Kernel底层的密码学算法?Kernel底层的其它模块,如何调用密码学算法?

4、如何在Kernel底层增加一种密码学算法的实现?

5、Kernel的其它模块中,有哪些需要使用密码学算法的场景?
本文术语定义:算法 :算法的种类,如对称密码算法、非对称密码算法... 算法实现 :具体的某一类算法,如aes-cbc、aes-ebc、sm4-cbc、twofish-ecb...


目录

1、密码学基础知识

2、Kernel密码学算法的软件框架和接口模型

2.1、Userspace对底层密码算法的访问
2.2、Kernelspace对底层密码算法的访问
2.3、增加一个算法实现

3、kernel中实现的算法实现

4、crypto engine的实现

5、代码导读

1、密码学基础知识

基本概念,如下请自行学习和理解:

  • 对称密码

  • 非对称密码

  • 数字摘要

  • 随机数

2、Kernel密码学算法的软件框架和接口模型

Linux Kernel系统中实现了很多算法,这些算法被统一归纳为:对称密码算法、数字摘要算法、随机数算法、认证加密算法、非对称密码算法等,并在Kernel层提供了统一操作的接口,供kernel其他模块调用。部分算法又被封装到了网络层,开放暴露给Userspace。其具体的结构/接口模型如下所示:

2.1、Userspace对底层密码算法的访问

Userspace通过netlink接口方式( PF_ALG)调用到底层算法的实现

在Userspace,需指定socket接口 PF_ALG,需指定算法名称(如skcipher)、需指定具体调用的"算法实现"(如aes-cbc),这样命令传输到Kernel层,就能根据这些信息跳转到响应的算法实现层。注意akcipher算法没有暴露给网络层,也就没有开放给Userspace了,所以在User程序中,是无法调用Kernel层的非对称密码算法的。

如下是一个Userspace程序调用kernel底层算法的示例:

(1)建立一个socket会话的流程:

socket(AF_ALG,...)bind()setsockoptacceptsendmsgrecvmsg

(2)相关代码

static int linux_af_alg_socket(const char *type, const char *name){  struct sockaddr_alg sa;  int s;
s = socket(AF_ALG, SOCK_SEQPACKET, 0); if (s < 0) { LogErr("%s: Failed to open AF_ALG socket: %s\n", __func__, strerror(errno)); return -1; }
os_memset(&sa, 0, sizeof(sa)); sa.salg_family = AF_ALG; os_strlcpy((char *) sa.salg_type, type, sizeof(sa.salg_type)); os_strlcpy((char *) sa.salg_name, name, sizeof(sa.salg_name)); if (bind(s, (struct sockaddr *) &sa, sizeof(sa)) < 0) { LogErr("%s: Failed to bind AF_ALG socket(%s,%s): %s\n",__func__, (char *) sa.salg_type, (char *) sa.salg_name, strerror(errno)); close(s); return -1; }
return s;}
static struct linux_af_alg_skcipher *linux_af_alg_skcipher(const char *alg, const u8 *key, size_t key_len){ struct linux_af_alg_skcipher *skcipher;
skcipher = os_zalloc(sizeof(*skcipher)); if (!skcipher) goto fail; skcipher->t = -1;
skcipher->s = linux_af_alg_socket(TYPE_NAME, alg); if (skcipher->s < 0) goto fail;
if (setsockopt(skcipher->s, SOL_ALG, ALG_SET_KEY, key, key_len) < 0) { LogErr("%s: setsockopt(ALG_SET_KEY) failed: %s\n", __func__, strerror(errno)); goto fail; }
skcipher->t = accept(skcipher->s, NULL, NULL); if (skcipher->t < 0) { LogErr("%s: accept on AF_ALG socket failed: %s\n", __func__, strerror(errno)); goto fail; }
return skcipher;fail: linux_af_alg_skcipher_deinit(skcipher); return NULL;}
static int aes_128_cbc_oper(char *alg_name, const u8 *key,size_t key_len, int enc, const u8 *iv, u8 *data, size_t data_len){ struct linux_af_alg_skcipher *skcipher; char buf[100]; struct iovec io[1]; struct msghdr msg; struct cmsghdr *hdr; ssize_t ret; u32 *op; struct af_alg_iv *alg_iv; size_t iv_len = AES_BLOCK_SIZE;
skcipher = linux_af_alg_skcipher(alg_name, key, key_len);//alg_name = "__cbc-aes-asr-ce" if (!skcipher) return -1;
io[0].iov_base = (void *) data; io[0].iov_len = data_len; os_memset(&msg, 0, sizeof(msg)); os_memset(buf, 0, sizeof(buf)); msg.msg_control = buf; msg.msg_controllen = CMSG_SPACE(sizeof(u32)) + CMSG_SPACE(sizeof(*alg_iv) + iv_len); msg.msg_iov = io; msg.msg_iovlen = 1;
hdr = CMSG_FIRSTHDR(&msg); hdr->cmsg_level = SOL_ALG; hdr->cmsg_type = ALG_SET_OP; hdr->cmsg_len = CMSG_LEN(sizeof(u32)); op = (u32 *) CMSG_DATA(hdr); *op = enc ? ALG_OP_ENCRYPT : ALG_OP_DECRYPT;
hdr = CMSG_NXTHDR(&msg, hdr); hdr->cmsg_level = SOL_ALG; hdr->cmsg_type = ALG_SET_IV; hdr->cmsg_len = CMSG_SPACE(sizeof(*alg_iv) + iv_len); alg_iv = (struct af_alg_iv *) CMSG_DATA(hdr); if(NULL != iv){ alg_iv->ivlen = iv_len; os_memcpy(alg_iv->iv, iv, iv_len); }else { alg_iv->ivlen = 0; }
ret = sendmsg(skcipher->t, &msg, 0); if (ret < 0) { LogErr("%s: sendmsg failed: %s\n", __func__, strerror(errno)); linux_af_alg_skcipher_deinit(skcipher); return -1; }
ret = recvmsg(skcipher->t, &msg, 0); if (ret < 0) { LogErr("%s: recvmsg failed: %s\n", __func__, strerror(errno)); linux_af_alg_skcipher_deinit(skcipher); return -1; } if ((size_t) ret < data_len) { LogErr( "%s: recvmsg not return full data (%d/%d)\n", __func__, (int) ret, (int) data_len); linux_af_alg_skcipher_deinit(skcipher); return -1; }
//s_to_binary(data,data_len); linux_af_alg_skcipher_deinit(skcipher); return 0;}
2.2、Kernelspace对底层密码算法的访问

Kernel程序对底层算法的调用采用函数直接调用的方式。流程为:kernel程序--->算法中间层--->算法实现层. 算法中间层 就是暴露给kernel其它模块的API函数。

如下是一个kernel中调用底层算法的一个示例(因skcipher为例):

static int test_skcipher(void){        struct crypto_skcipher *tfm = NULL;        struct skcipher_request *req = NULL;        u8 *data = NULL;        const size_t datasize = 512; /* data size in bytes */        struct scatterlist sg;        DECLARE_CRYPTO_WAIT(wait);        u8 iv[16];  /* AES-256-XTS takes a 16-byte IV */        u8 key[64]; /* AES-256-XTS takes a 64-byte key */        int err;
/* * Allocate a tfm (a transformation object) and set the key. * * In real-world use, a tfm and key are typically used for many * encryption/decryption operations. But in this example, we'll just do a * single encryption operation with it (which is not very efficient). */
tfm = crypto_alloc_skcipher("xts(aes)", 0, 0); if (IS_ERR(tfm)) { pr_err("Error allocating xts(aes) handle: %ld\n", PTR_ERR(tfm)); return PTR_ERR(tfm); }
get_random_bytes(key, sizeof(key)); err = crypto_skcipher_setkey(tfm, key, sizeof(key)); if (err) { pr_err("Error setting key: %d\n", err); goto out; }
/* Allocate a request object */ req = skcipher_request_alloc(tfm, GFP_KERNEL); if (!req) { err = -ENOMEM; goto out; }
/* Prepare the input data */ data = kmalloc(datasize, GFP_KERNEL); if (!data) { err = -ENOMEM; goto out; } get_random_bytes(data, datasize);
/* Initialize the IV */ get_random_bytes(iv, sizeof(iv));
/* * Encrypt the data in-place. * * For simplicity, in this example we wait for the request to complete * before proceeding, even if the underlying implementation is asynchronous. * * To decrypt instead of encrypt, just change crypto_skcipher_encrypt() to * crypto_skcipher_decrypt(). */ sg_init_one(&sg, data, datasize); skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &wait); skcipher_request_set_crypt(req, &sg, &sg, datasize, iv); err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); if (err) { pr_err("Error encrypting data: %d\n", err); goto out; }
pr_debug("Encryption was successful\n");out: crypto_free_skcipher(tfm); skcipher_request_free(req); kfree(data); return err;}
2.3、增加一个算法实现

增加一个"算法的实现" 只需要:

  • 定义一个算法的结构体变量并初始化,其实就是实现其中的成员函数

  • 将该算法实现注册到系统中。

结构体的定义并初始化:

static struct skcipher_alg aes_algs[] = {   {    .base.cra_name    = "__ecb(aes)",    .base.cra_driver_name  = "__ecb-aes-neonbs",    .base.cra_priority  = 250,    .base.cra_blocksize  = AES_BLOCK_SIZE,    .base.cra_ctxsize  = sizeof(struct aesbs_ctx),    .base.cra_module  = THIS_MODULE,    .base.cra_flags    = CRYPTO_ALG_INTERNAL,
.min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .setkey = aesbs_setkey, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, },
{ .base.cra_name = "__cbc(aes)", .base.cra_driver_name = "__cbc-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aesbs_cbc_ctx), .base.cra_module = THIS_MODULE, .base.cra_flags = CRYPTO_ALG_INTERNAL,
.min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_cbc_setkey, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }};

成员函数的实现,例如:

static int ecb_encrypt(struct skcipher_request *req){  return __ecb_crypt(req, aesbs_ecb_encrypt);}

将该算法实现注册到系统中:

static int __init aes_init(void){...  err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));...}module_init(aes_init);

小小总结一下, 如果您要增加一个算法实现,那么您就是需要实现定义如下结构体,并调用 crypto_register_xxx()注册到kernel系统中:
  • skcipher_alg
  • akcipher_alg
  • ahash_alg
  • rng_alg
  • aead_alg

3、kernel中实现的算法实现

思考:

  • 对称密码底层是怎样实现的?纯软?硬件?Neon指令?CE指令?

  • 非对称密码底层是怎样实现的?

  • Hash、rng、aead 又都是怎样实现的?

实现算法的方式:

  • (1)在armv8/armv9的芯片中,有ARM-CE指令可以进行aes/hash/md5计算,

  • (2)在armv8/armv9的芯片中,也有ARM-NEON指令也可以进行aes/hash/md5计算

  • (3)arm的security IP中,有cryptocell之类的加密芯片

  • (4)另外SOC厂商也可能集成自己设计的crypto engine加解密芯片

  • (5)除此之外,还有C语言、汇编程序等编程语言实现的纯软实现

毫无疑问,在效率这块肯定是:(3)(4) > (1) > (2) > (5). 另外从"实现算法的方式" 来看,如果是rng、aead、rsa之类的算法,那么就不能用ARM-CE这种方式,只有编程语言实现、Neon指令实现、crypto engine(含arm security IP)这几种方式了。

kernel怎么玩的?:

  • 针对 crypto engine(含arm security IP) 这种,先当SOC硬件不支持,跳过此场景。

  • 针对rng、aead、rsa,那么kernel有一套纯软的实现 (似乎没有看到arm neon指令的实现)

  • 针对aes、hash,有arm-ce的实现、arm neon指令的实现、纯软的实现,三者三选一(通过宏开关,只能选1)

crypto engine的实现:如果自定义了crypto engine的实现,那么要看你具体的设计,是设计成“取代原有算法实现”,还是设计成“新增算法实现”。如果是前者,那么对于aes/hash,则变成了四选一的了(crypto engine实现、arm-ce的实现、arm neon指令的实现、纯软)。如果是后者,这和原有实现不冲突。

有关aes/hash底层实现三选一的开关

(1) 开启下面两个宏,使用ARM Neon指令的实现 CONFIG_CRYPTO_AES_ARM64_CE_BLK CONFIG_CRYPTO_AES_ARM64_NEON_BLK(2) 在(1) 的基础之上,再开启如下宏,使用ARM CE指令的实现 USE_V8_CRYPTO_EXTENSIONS(3) 以上三个宏都不开启的情况下,使用默认的纯软实现

4、crypto engine的实现

(以ARM Security IP的cryptocell 712为例)

在Linux Kernel中开启 CONFIG_CRYPTO_DEV_CCREE宏控即可起用该实现, 代码路径如下:

以为aes-cbc为例,其实现的名字 和 Kernel中默认是算法实现的名字是一致的,即使这种实现方式是取代原有算法实现

{  .name = "cbc(aes)",  .driver_name = "cbc-aes-ccree",  .blocksize = AES_BLOCK_SIZE,  .template_skcipher = {    .setkey = cc_cipher_setkey,    .encrypt = cc_cipher_encrypt,    .decrypt = cc_cipher_decrypt,    .min_keysize = AES_MIN_KEY_SIZE,    .max_keysize = AES_MAX_KEY_SIZE,    .ivsize = AES_BLOCK_SIZE,  },  .cipher_mode = DRV_CIPHER_CBC,  .flow_mode = S_DIN_to_AES,  .min_hw_rev = CC_HW_REV_630,  .std_body = CC_STD_NIST,}

4、代码导读

在网络层、算法中间层、算法实现层有着丰富的结构体类型?那么怎么去阅读代码?怎弄清各个层面之间的逻辑呢?事实上我们只要理清这些结构体之间的关系,将其抽象成模型,就会变得更加容易理解了。

如下是以Userspace调用底层的对称密码函数为例总结的一张数据结构图:

sock通信进入网络层后(algifskcipher.c),构建skcipherrequest结构体,通过该结构体,就能寻址到底层的算法实现,继而完成算法实现的调用。这些总结一下就是:

  • skcipher_request //网络层构建的结构体

  • cryptoskcipher // kernel中间层构建的结构体,如果是kernel层调用底层算法,那么就从构建cryptocipher结构体开始。

  • skcipher_alg //算法实现层的结构体,描述着具体的算法实现,有实现厂商自己添加。

上述复杂的结构体流程,进一步抽象,就变成如下这个样子:

既然如此,那么我们还可以举一反三一下:




作者上一篇文章:armv8/armv9中断系列详解-中断示例展示

作者往期文章:

第一篇: 深入学习Cache系列 1: 带着几个疑问,从Cache的应用场景学起

第二篇:深入学习Cache系列 2: Cache是如何工作的?概念以及工作过程

第三篇:深入学起Cache系列 3 : 多核多Cluster多系统之间的缓存一致性

第四篇:armv8-armv9 MMU深度学习

第五篇:armv8-armv9中断系列详解-硬件基础篇

往期精华文章:【精华】Linux阅码场原创精华文章汇总


阅码场付费会员专业交流群

会员招募:各专业群会员费为88元/季度,权益包含群内提问,线下活动8折,全年不定期群技术分享(普通用户直播免费,分享后每次点播价为19元/次),有意加入请私信客服小月(小月微信号:linuxer2016)


专业群介绍:

彭伟林-阅码场内核性能与稳定性
本群定位内核性能与稳定性技术交流,覆盖云/网/车/机/芯领域资深内核专家,由阅码场资深讲师彭伟林主持。


甄建勇-性能优化与体系结构

本群定位Perf、cache和CPU架构技术交流,覆盖云/网/车/机/芯领域资深用户,由阅码场资深讲师甄建勇主持。


邓世强-Xenomai与实时优化

本群定位Xenomai与实时优化技术交流,覆盖云/网/车/机/芯领域资深用户,由阅码场资深讲师邓世强和彭伟林共同主持。


周贺贺-Tee和ARM架构

本群定位Tee和ARM架构技术交流,覆盖云/网/车/机/芯领域资深用户,由阅码场资深讲师周贺贺主持。

Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 86浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 106浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 101浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 41浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 52浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 170浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 75浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 71浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 73浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 128浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 45浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 105浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 70浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 171浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦