常用锐化算法及Sobel锐化的介绍

FPGA技术江湖 2022-05-05 05:23

1. 图像锐化原理介绍


在增强图像之前一般会先对图像进行平滑处理以减少或消除噪声。图像的能量主要集中在低频部分,而噪声和图像边缘信息的能量主要集中在高频部分。因此,平滑处理会使原始图像的边缘和轮廓变得模糊。为了减少这类不利效果的影响,需要利用图像锐化技术,使图像的边缘变得清晰。图像锐化处理主要有两个目的:一是与图像平滑处理相反,增强图像边缘,使模糊的图像更加清晰,颜色变得鲜明突出,图像的质量有所改善,产生更适合人观察和识别的图像;二是经过锐化处理后,目标物体的边缘鲜明,以便于计算机提取目标物体的边界、对图像进行分割、目标区域识别、区域形状提取等,为图像理解和分析打下基础。

经过平滑处理的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。微分运算是求信号的变化率,由傅立叶变换的微分性质可知,微分运算具有加强高频分量的作用。但需要注意的是,进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般是先消除或减轻噪声后再进行锐化处理,如图1所示。


1 图像锐化示意图


物体的边缘是以图像局部特性不连续性的形式出现的,即边缘意味着一个区域的结束和另一个区域的开始。图像边缘有方向和幅度两个参数。通常,沿边缘走向的像素变化平缓,而垂直于边缘走向的像素变化剧烈。边缘一般有两类(图2所示):(1)阶跃状边缘,它两边的像素灰度值显著不同;(2)屋顶状边缘,它位于像素灰度值从增加到减少(或从减少到增加)的变化转折点。经典的边缘提取方法是考虑图像的每个像素在某个领域内的变化,利用边缘邻近一阶或二阶方向导数变化规律来检测边缘。图像灰度值的显著变化可以用一阶差分替代一阶微分的梯度来表示,分别以梯度向量的幅度和方向来表示。因此,图像中陡峭边缘的梯度值很大;灰度值变化平缓的地方,梯度值较小;灰度值相同的地方,梯度值为零。

下面开始介绍运用一阶微分和二阶微分运算来进行图像边缘检测的原理。


2 边缘类型


1.1.一阶微分边缘检测


一阶微分主要是指梯度模运算,图像的梯度模值包含了边界及细节信息。图像在点处的梯度定义为:
由于数字图像是离散的,所以可以用差分来替代微分,即:

梯度的幅值即模值,为:

梯度的方向为:

对图像f使用梯度模算子进行运算后,可产生一幅梯度图像g,图像g和图像f之间的像素关系为:

其中G为梯度模算子。由于梯度图像g反映了图像f的灰度变化分布信息,因此可以对其进行某种适当的处理和变换,或将变换后的梯度图像和原图像组合作为f锐化后的图像。
运用一阶微分运算的边缘检测算子包括Robert算子、Prewitt算子和Sobel算子等等,将在后续小节中对Robert和Sobel边缘检测算法的实现进行介绍。


1.2.二阶微分边缘检测


二阶微分定义为。考虑坐标旋转变换,设P点旋转前坐标为,顺时针旋转θ°后得,如图3所示,则有:

图3 坐标旋转变换

函数的一阶偏导数为

函数的一阶偏导数为

函数的二阶偏导数为

函数的二阶偏导数为

将函数的二阶偏导数相加得

由此可见,二阶微分具有各向同性、旋转不变性的特征,从而满足不同走向的图像边缘的锐化要求。

由于数字图像是离散的,所以可以用差分来替代微分,即:


后续小节将要介绍的Laplacian边缘检测算法正是基于二阶微分运算。

1.3.一阶微分与二阶微分边缘检测对比


一阶微分和二阶微分运算都可以用来检测图像边缘,但它们对边缘的检测原理和检测效果是有差异的,如下所示:

(1)对于突变型的细节,通过一阶微分的极值点和二阶微分的过零点均可以检测出来,如图4所示。

图4 突变型细节


(2)对于细线型的细节,通过一阶微分的过零点和二阶微分的极值点均可以检测出来,如图5所示。

图5 细线型细节


(3)对于渐变型的细节,一般情况下突变幅度小、定位难、不易检测,但二阶微分的信息比一阶微分的信息多,如图6所示。

图6 渐变型细节


从图像的景物细节的灰度分布特性可知,有些灰度变化特性一阶微分的描述不是很明确,为此,采用二阶微分能够获得更丰富的景物细节。

2.Sobel边缘检测与锐化的实现


2.1.Sobel边缘检测算法理论


Robert算子只采用梯度微分锐化图像,会让噪声、条纹得到增强,而Sobel边缘检测算子则在一定程度上解决了这个问题,它是一种先求平均、再求微分、最后求梯度的算子,其算子形式如下所示。显然,Sobel算子只考虑了源像素点周围8个相邻像素点的水平和垂直方向的像素突变,而没有加入源像素点灰度值的计算。


Sobel算子的水平和垂直模板如图12所示,分别对水平边缘和垂直边缘的影响最大。

图12 Sobel算子模板


Sobel算子在一个方向求微分,而在另一个方向求平均,因而对噪声相对不敏感,具有抑制噪声的作用。由于像素平均相当于对图像进行低通滤波,所以Sobel算子对边缘的定位不如Robert算子。但与Robert算子相比,Sobel算子有一定的抗干扰性,图像效果比较干净。

利用算子模板可求得水平和垂直方向的梯度,再通过梯度合成便可获得边缘检测结果,如下所示:

有时,为了简化运算,可以用下面式子来近似替代。


Sobel边缘检测的过程如图13所示,获得了比较粗的边界,但边缘定位精度不够高,,有时可能对非边缘像素的响应大于某些边缘处的响应或者响应差别不是很大,造成漏检或误检。当对精度要求不是很高时,是一种较为常用的边缘检测方法。将边缘检测结果与原图叠加便可以得到锐化后的图像,如图14所示。

图13 Sobel边缘检测


图14 Sobel锐化


2.2.Sobel边缘检测Matlab实现


前面已经对Sobel边缘检测算法进行了介绍,现在基于Matlab软件对其进行仿真。创建函数Sobel_Edge_Detector用于实现Sobel算子对图像进行边缘检测,相关的matlab代码如下所示(详见Sobel_Edge_Detector.m)。

% 灰度图像Sobel边缘检测算法实现

% IMG为输入的灰度图像

% Q为输出的灰度图像

function Q = Sobel_Edge_Detector(IMG)


[h,w] = size(IMG);              % 获取图像的高度h和宽度w

Q = zeros(h,w);                 % 初始化Q为全0的h*w大小的图像


% -------------------------------------------------------------------------

%         Wx                Wy               Pixel

% [  -1  -2  -1  ]   [  +1  0  -1]     [  P1  P2  P3]

% [   0   0   0  ]   [  +2  0  -2]     [  P4  P5  P6]

% [  +1  +2  +1  ]   [  +1  0  -1]     [  P7  P8  P9]

Wx = [-1,-2,-1;0,0,0;1,2,1];         % Weight x

Wy = [1,0,-1;2,0,-2;1,0,-1];         % Weight y


IMG = double(IMG);


for i = 1 : h

    for j = 1 : w

        if(i<2 || i>h-1 || j<2 || j>w-1)

            Q(i,j) = 0;             % 边缘像素不处理

        else

            % Gx = sum(Wx.*IMG(i-1:i+1,j-1:j+1),'all');

            Gx = Wx(1,1)*IMG(i-1,j-1) + Wx(1,2)*IMG(i-1,j) + Wx(1,3)*IMG(i-1,j+1) +...

                 Wx(2,1)*IMG(i  ,j-1) + Wx(2,2)*IMG(i  ,j) + Wx(2,3)*IMG(i  ,j+1) +...

                 Wx(3,1)*IMG(i+1,j-1) + Wx(3,2)*IMG(i+1,j) + Wx(3,3)*IMG(i+1,j+1);

            % Gy = sum(Wy.*IMG(i-1:i+1,j-1:j+1),'all');

            Gy = Wy(1,1)*IMG(i-1,j-1) + Wy(1,2)*IMG(i-1,j) + Wy(1,3)*IMG(i-1,j+1) +...

                 Wy(2,1)*IMG(i  ,j-1) + Wy(2,2)*IMG(i  ,j) + Wy(2,3)*IMG(i  ,j+1) +...

                 Wy(3,1)*IMG(i+1,j-1) + Wy(3,2)*IMG(i+1,j) + Wy(3,3)*IMG(i+1,j+1);

            % Q(i,j) = sqrt(Gx^2 + Gy^2);

            Q(i,j) = abs(Gx) + abs(Gy);

        end

    end 

end

Q=uint8(Q);

 

上述Matlab代码中需要注意以下几点:

(1)函数输入IMG是uint8数据类型的图像,而计算时存在负数和小数,需要用浮点数来表示,所以将IMG由uint8数据类型转为double数据类型;

(2)对图像边缘的像素不进行处理,直接输出0;

(3)将函数输出Q由double数据类型转为uint8数据类型。


接下来编写顶层M文件,相关的Maltab代码如下所示(详见Sobel_Sharpen_Test.m),Sobel锐化处理流程如图15所示。


clear all; 

close all;

clc;


% -------------------------------------------------------------------------

% Read PC image to Matlab

IMG1 = imread('../../0_images/Lenna.jpg');    % 读取jpg图像

IMG1 = rgb2gray(IMG1);

subplot(131);imshow(IMG1);title('【1】原图');


% -------------------------------------------------------------------------

IMG2 = Sobel_Edge_Detector(IMG1);

subplot(132);imshow(IMG2);title('【2】Sobel边缘检测结果');


% -------------------------------------------------------------------------

IMG3 = IMG1 + IMG2;

subplot(133);imshow(IMG3);title('【3】Sobel锐化图像');



图15 Sobel锐化处理流程


执行顶层M文件可得到图16所示的结果,其中【2】是进行Sobel边缘检测得到的效果图,可以看出Sobel算子对边缘有较强的响应,与Robert算子相比,对边缘的响应更加强烈,得到的边缘更加宽;【3】是原图与边缘检测结果叠加后的效果图,相比原图,边缘和细节更加突出,但图像有些失真。


图16 Sobel边缘检测与锐化



END

往期精选 

 
 

电子版资料获取方式正确流程

【免费】FPGA工程师招聘平台

FPGA芯片行业科普

新谈:为什么你觉得FPGA难学?如何入门?

SANXIN-B01开发板verilog教程V3电子版

笔记连载 | Day9【xilinx ZYNQ7000系列之《PS端 》串口打印】

求职面试 | FPGA或IC面试题最新汇总篇

FPGA项目开发:204B实战应用-LMK04821代码详解(二)

项目合作 | 承接FPGA项目公告

资料汇总|FPGA软件安装包、书籍、源码、技术文档…(2022.03.01更新)

FPGA就业班,系统性学习FPGA,高薪就业,新增SOC系统设计、ZYNQ等,线上线下同步,4月19号开班!


FPGA技术江湖广发江湖帖

无广告纯净模式,给技术交流一片净土,从初学小白到行业精英业界大佬等,从军工领域到民用企业等,从通信、图像处理到人工智能等各个方向应有尽有,QQ微信双选,FPGA技术江湖打造最纯净最专业的技术交流学习平台。


FPGA技术江湖微信交流群

加群主微信,备注职业+方向+名字进群


FPGA技术江湖QQ交流群

备注地区+职业+方向+名字进群

FPGA技术江湖 任何技术的学习就好比一个江湖,对于每一位侠客都需要不断的历练,从初入江湖的小白到归隐山林的隐世高人,需要不断的自我感悟自己修炼,让我们一起仗剑闯FPGA乃至更大的江湖。
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 89浏览
  • 1月9日,在2025国际消费电子展览会(CES)期间,广和通发布集智能语音交互及翻译、4G/5G全球漫游、随身热点、智能娱乐、充电续航等功能于一体的AI Buddy(AI陪伴)产品及解决方案,创新AI智能终端新品类。AI Buddy是一款信用卡尺寸的掌中轻薄智能设备,为用户带来实时翻译、个性化AI语音交互助手、AI影像识别、多模型账户服务、漫游资费服务、快速入网注册等高品质体验。为丰富用户视觉、听觉的智能化体验,AI Buddy通过蓝牙、Wi-Fi可配套OWS耳机、智能眼镜、智能音箱、智能手环遥
    物吾悟小通 2025-01-09 18:21 48浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 116浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 87浏览
  • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
    艾体宝IT 2025-01-10 15:52 64浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 96浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 101浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 120浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 121浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 128浏览
  • 车机导航有看没有懂?智能汽车语系在地化不可轻忽!随着智能汽车市场全球化的蓬勃发展,近年来不同国家地区的「Automotive Localization」(汽车在地化)布局成为兵家必争之地,同时也是车厂在各国当地市场非常关键的营销利器。汽车在地化过程中举足轻重的「汽车语系在地化」,则是透过智能汽车产品文字与服务内容的设计订制,以对应不同国家地区用户的使用习惯偏好,除了让当地车主更能清楚理解车辆功能,也能进一步提高品牌满意度。客户问题与难处某车厂客户预计在台湾市场推出新一代车款,却由于车机导航开发人
    百佳泰测试实验室 2025-01-09 17:47 43浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 88浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 104浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 109浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 108浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦