谈谈差分信号

原创 加油射频工程师 2022-05-04 15:02

更多经验分享,关注 加油射频工程师 


习惯了单端信号,对差分信号的使用还是会有点发怵。所以有的器件厂商,虽然输入接口是差分,但是会注明一下,单端输入时的具体接法。

 

差分信号的抗扰以及EMI特性

但其实,由于差分信号是对差模信号响应,对共模信号不敏感,所以差分信号的抗干扰特性是优于单端信号的。

即差分信号是对两根线之间的差值响应,而不是对线与地之间的差值响应。比如说,有一干扰信号,耦合到一对差分线上,我们可以近似认为,耦合到两根线上的干扰是等幅同相的,所以差分信号对它不响应。

 

同时,差分信号上两根线上的电流是相反的,所以一定程度上,两者在两根导体外产生的磁场是有相消的情况存在的。而电场又紧密的耦合在一起,所以,差分信号对外产生的辐射干扰也是小于单端信号的。

射频差分信号需要地平面么?

差分信号两线之间互为参考,那下面还需不需要地平面呢(2)(3)?这个问题稍微有点复杂。

 

如果结构中,有两根耦合微带线以及参考平面的话,如上图所示,那在其结构中存在两种模式:

(1) 奇模模式

给两根线的驱动电压等幅反相,则会激发出奇模模式。

(2) 偶模模式

给两根线的驱动电压等幅同相,则会激发出偶模模式。

从上图可以发现,不管是偶模模式还是奇模模式,都存在着微带线与参考平面的耦合。

虽然在奇模模式下,微带线之间会有一定程度上的互为参考面,但是还是有部分回流存在于参考地平面上。

如果地平面被分割或被移除,肯定会造成模式的破坏。


如果在实际设计时,需尽量保持差分线下地平面的完整。如果真的没办法,不能保证地平面完整的话,可以参考文献【3】,合理设计差分线之间的间距,选择介质材料的厚度,以减小地平面对微带差分线的阻抗。


差分信号为什么会有偶模模式呢?

理想的差分信号,共模就是DC,这个时候是不存在偶模模式的;只存在奇模模式。

但是如果差分信号的相位之间不是严格相差180度,而是有几度的偏移,这在实际应用中经常发生。这个时候,就产生偶模模式了。

我们可以用公式推导一下。

如果假设频率为50Hz,用matlab画出上述的曲线,则可以看到共模信号已经产生,只不过幅度比较小。

 

差分滤波器等怎么设计

如果需要在差分回路上放置滤波器,应该怎么设计呢?

其实很简单,比如你要设计输入输出阻抗为200ohm的差分滤波器【5】,就先设计输入输出阻抗为100ohm的单端滤波器,然后将两个这样的滤波器的接地端连接在一起,将原来并联支路上可合并的合在一起,即可得到输入输出差分阻抗为200ohm的滤波器。

 

差分线绘制时,要注意哪些事项?【6】

(1) 差分线之间,首要任务是保持等长。

因为差分接收器主要通过检测正负信号的交叉点位置,所以,如果不等长,交叉点位置就会改变。

(2) 尽量保证差分线宽度、间距不变,因为这两个参数改变的话,会引起差分线特征阻抗的改变,引起反射。

(3) 补等长的时候,哪边有不等长不哪边。

(4) 和单端信号一样,避免使用90度角。

(5) 差分线之间布局尽量对称,特别在串联电阻或电容处。

(6) 在差分线上不要有stub.

 

参考文献:

(1)https://wk.baidu.com/view/b482383edd3383c4ba4cd274?pcf=2

(2) https://wk.baidu.com/view/b1e5115b312b3169a451a432?pcf=2

(3)the impact of a nonideal return path on differential signal integrity

(4)Eric Bogatin,Not all common currents are bad

(5)Design of Differential Filters for High-Speed Signal Chains,TI 应用文档

(6)Understanding and Designing Differential Filters for Communications Systems,ADI应用文档


部分图片及文字来源于网络,如有侵权,麻烦后台留言,立马删除,谢谢!

长按图片关注微信号




评论
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 65浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 44浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 65浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 101浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 78浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 68浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 45浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦