使用Vitis软件平台进行调试

FPGA开发圈 2022-04-26 12:03

本章描述了对您所执行的设计流程可能出现的各种问题进行调试的方法。第一个选项是使用赛灵思 Vitis™ 软件平台进行调试。

Vitis 软件平台调试器提供了下列调试功能:

  • 支持在 Arm® Cortex™-A72、Arm Cortex-R5F 和 MicroBlaze™ 处理器架构(异构多处理器硬件系统调试)上调试程序。

  • 支持在硬件开发板上调试程序。

  • 支持在远程硬件系统上进行调试。

  • 提供功能丰富的 IDE 用于调试程序。

  • 提供工具命令语言 (Tcl) 界面,用于运行测试脚本和自动化操作。

Vitis 软件平台调试器支持您在程序执行时查看其中进行的操作。您可设置断点或观察点以停止处理器、单步调试程序执行、查看程序变量和堆栈以及查看系统中存储器的内容。

Vitis 软件平台支持通过赛灵思系统调试器进行调试。

赛灵思系统调试器

赛灵思 Vitis™ 软件平台调试器支持您对代码逐行进行单步调试。您可设置断点或观察点以停止处理器、单步调试程序执行、查看程序变量和堆栈以及查看系统中存储器的内容。

调试器支持通过单应用调试和 GNU 调试器 (GDB) 来进行调试。赛灵思自定义系统调试器衍生自开源工具并与 Vitis 软件平台集成。

赛灵思系统调试器使用赛灵思 hw_server 作为底层调试引擎。Vitis 软件平台可将每项用户界面操作转换为一连串目标通信框架 (TCF) 命令。随后,它会对系统调试器的输出进行处理,以显示所调试的程序的当前状态。它可使用赛灵思 hw_server 与硬件上的处理器进行通信。调试工作流程如下图所示。

图 1:系统调试器流程

调试工作流程由以下几个部分组成。

  • 可执行 ELF 文件:要调试应用,您必须使用专为调试而编译的 elf 文件。调试用 elf 文件包含额外调试信息,以供调试器在源代码与该源代码所生成的二进制文件之间建立直接关联。要管理构建配置,请右键单击软件应用并选择“构建配置 (Build Configurations) → 管理 (Manage)”。

  • 调试配置:要启动调试会话,您必须在 Vitis 软件平台中创建调试配置。此配置可捕获启动调试会话所需的选项,包括可执行文件名称、要调试的处理器目标及其它信息。要创建调试配置,请右键单击软件应用并选择“调试方式 (Debug As) → 调试配置 (Debug Configurations)”。

  • Vitis 软件平台调试透视图:通过使用“调试 (Debug)”透视图,您就可以在 Workbench 中管理程序的调试或运行。您可对程序的执行进行如下控制:包括设置断点、暂挂已启动的程序、单步调用代码并检验变量内容等。要查看“Debug”透视图,请依次选择“窗口 (Window) → 打开透视图 (Open Perspective) → 调试 (Debug)”。

在 Vitis 软件平台中,修改代码、构建可执行文件和调试程序的整个流程是可重复的。

注意:如果您在编译后对源代码进行编辑,则会更改行号,因为调试信息与源代码之间直接相连。同样,对已最优化的二进制文件进行调试还可能导致执行追踪过程中出现意外的跳步。

使用 Vitis 软件平台调试软件

此示例描述了如何调试 hello world 应用。

如果您尚未在 APU 或 RPU 上创建 hello world 应用,请遵循运行裸机 Hello World 应用或在 DDR 内存上运行裸机 Hello World 应用中的步骤创建此应用。

创建 Hello World 应用后,请逐步执行以下示例,使用 Vitis™ 软件平台来调试软件。

  1. 右键单击应用,然后单击“构建工程 (Build Project)”以构建应用。

  2. 右键单击应用工程并选择“调试方式 (Debug As) → 在硬件上启动(单应用调试)(Launch on Hardware (Single Application Debug))”,如下图所示。

    注意:“Debug”透视图也可通过选择“窗口 (Window) → 调试透视图 (Debug Perspective)”来启动。

    注意:此页面中所示地址可能与您的系统上所示地址略有不同。

    处理器当前置于 main() 方法开头,且程序执行暂挂于行 0x00000000fffc0cf0。您可在“反汇编 (Disassembly)”视图中确认此信息,在此视图中显示汇编级程序执行同样暂挂于 0x00000000fffc0cf0。

    注意:如果“Disassembly”视图未显示,请选择“窗口 (Window) → 反汇编 (Disassembly)”。

  3. helloworld.c 窗口同样显示执行暂挂于 C 语言代码中的首个可执行文件行上。选择“寄存器 (Registers)”视图可确认程序计数器 pc 寄存器包含 0x00000000fffc0cf0。

    注意:如果“Registers”视图未显示,请选择“窗口 (Window) → 寄存器 (Registers)”。

  4. 双击 helloworld.c 窗口中显示 printf(“Hello World from APU\n\r”); 的代码行边缘(行号左侧)处。这样即可在 printf 命令处设置断点。要确认断点,请复查“断点 (Breakpoints)”视图。

    注意:如果“Breakpoints”视图未显示,请选择“窗口 (Window) → 断点 (Breakpoints)”。

  5. 选择“运行 (Run) → 单步进入 (Step Into)”以便对 init_platform() 例程执行单步进入。程序执行暂挂于 0x00000000fffc0cf0 位置。调用堆栈当前深度为 2 层。

  6. 选择“运行 (Run) → 恢复 (Resume)”以便继续运行程序直至断点。

    这样程序执行会止于包含 printf 命令的代码行。“Disassembly”和“Debug”窗口均显示程序执行止于 0x00000000fffc0cf4。

    注意:如果您对 helloworld 源代码执行了任何修改,那么您的调试窗口中的执行地址可能与此处所示不同。

  7. 请选择“Run → Resume”以便运行程序直至结束。

    当程序完成后,“Debug”窗口显示程序暂挂于“exit”例程中。如果您在调试器控制下运行程序,就会出现此结果。

  8. 请反复多次运行您的代码。尝试单步步进、检验存储器、断点、修改代码并添加 print 语句。尝试添加和移动视图。

    提示:您可使用 Vitis 软件平台调试快捷键来执行单步进入 (step-into) (F5)、单步返回 (step-return) (F7)、单步跳过 (step-over) (F6) 和恢复 (resume) (F8)。或者,您可使用工具栏按钮。

使用 XSCT 执行调试

您可在命令行模式下使用封装在 XSCT 内的 XSDB 来执行调试。此示例描述了如何使用 XSCT 来对裸机应用 hello_world_r5 执行调试。

以下步骤指示如何在 Arm Cortex-R5F 上使用 XSCT 加载裸机应用。

此示例仅用于演示使用 XSDB/XSCT 进行命令行调试时可能出现的情况。根据要求,您可在 XSCT 中选择使用系统调试器图形界面或使用命令行调试器来调试代码。所有 XSCT 命令均可脚本化,对于本示例中涵盖的命令都是如此。

设置目标

  1. 在目标上的 USB-JTAG 连接器与主机上的 USB 端口之间使用 USB 线进行连接。

  2. 在“JTAG 启动 (JTAG Boot)”模式下设置开发板,其中 SW1 设置如下图所示。

  3. 使用电源开关 SW13 给开发板上电。

  4. 单击 Vitis 软件平台工具栏中的“XSCT 控制台 (XSCT Console)”按钮,以打开“XSCT Console”视图。或者,也可依次单击“Xilinx → XSCT Console”以打开“XSCT Console”视图。

  5. 在“XSCT Console”视图中,使用 connect 命令通过 JTAG 连接至目标:

    xsct% connect

    connect 命令会返回连接的通道 ID。

  6. 加载 pdi/bin 文件:

    device program  to .pdi file>

    注意:在 C:\edt\edt_versal\edt_versal.runs\impl_1\edt_versal_wrapper.pdi 中可找到此 PDI 文件。在 Windows 下,路径名应以括号(如,{C:\path\to\file.pdi})括起,以避免反斜杠被视为转义字符。对于 Linux 则无此要求,因为 Linux 使用正斜杠。

使用 XSCT 加载应用

以下是使用 XSCT 加载应用的步骤。

  1. 运行 xsct% targets

    targets 命令可列出可用目标,并允许您通过目标 ID 来选择相应目标。在 JTAG 链上发现目标时,会为其分配 ID,因此目标 ID 可能随会话不同而变。

    注意:对于非交互式使用(例如,脚本编制),可使用 -filter 选项来选择目标,以代替按 ID 选择目标。

    下图中列出了目标。

  2. 现在,请在 Arm® Cortex-R5F 核 0 上下载 hello_world_r5 应用。

  3. 选择 RPU Cortex™-R5F 核 0 目标 ID。

    xsct% targets 3xsct% rst -processor

    rst -processor 命令用于清除个别处理器核上的复位。此步骤的重要性在于当 Versal™ ACAP 启动 JTAG 启动模式时,所有 Cortex- A72 核与 Cortex-R5F 核都保持处于复位状态。您必须清除每个核上的复位,然后才能在这些核上执行调试。XSDB 中的 rst 命令可用于清除复位。

    注意:对于包含当前目标作为子项的组(例如,APU 或 RPU),运行 rst -cores 命令即可清除组中的所有处理器核上的复位。例如,如果当前目标为 Cortex-A72 #0,那么 rst -cores 可清除 APU 中的所有 Cortex-A72 核上的复位。

    xsct% dow {C:\edt\edt_vck190\helloworld_r5\Debug\helloworld_r5.elf}

    xsct% dow C:/edt/edt_vck190/helloworld_r5/Debug/helloworld_r5.elf

    此时,您可看到来自 elf 文件的各段均按顺序下载。下载成功后会显示 XSCT 提示。现在,请配置串口终端(Tera Term、Minicom 或用于 UART-0 USB 串口连接的 Vitis 软件平台串口终端接口)。

串口终端配置

  1. 根据所用主机使用 Tera Term 或 Minicom 启动终端会话,COM 端口和波特率如下图所示。

  2. 对于端口设置,请验证器件管理器中的 COM 端口。VCK190 评估板提供了 3 个公开的 USB UART 接口。请选择与编号最低的接口关联的 COM 端口。在此例中,对于 UART-0,请选择含 interface-0 的 com-port。

使用 XSCT 运行和调试应用

  1. 运行应用前,请在 main() 处设置断点。

    xsct% bpadd -addr &main

    此命令会返回断点 ID。您可使用 bplist 命令验证设置的断点。如需获取有关 XSCT 中的断点的详细信息,请在 XSCT 中输入 help breakpoint

  2. 恢复处理器核。

    xsct% con

    当核命中断点时,会显示以下消息。

    xsct% Info: Cortex-R5 \#0 Stopped at 0x10021C (Breakpoint)

  3. 此时,当核停止后,您即可查看寄存器。

    xsct% rrd

  4. 查看局部变量。

    xsct% locals

  5. 单步跳过源代码中的一行,并查看堆栈追踪。

    xsct% nxt
    Info: Cortex-R5 #0 Stopped at 0x100490 (Step)
    xsct% bt

    您可使用 help 命令来查找其它选项。

    }

    您可使用 help running 命令获取可用于利用 XSCT 运行或调试应用的选项列表。

  6. 现在,您可运行代码。

    xsct% con

    这样即可在 UART-0 终端上查看 Cortex-R5F 应用打印消息。

© 2020 年赛灵思公司版权所有。


关注我们


FPGA开发圈 这里介绍、交流、有关FPGA开发资料(文档下载,技术解答等),提升FPGA应用能力。
评论 (0)
  • 升职这件事,说到底不是单纯靠“干得多”或者“喊得响”。你可能也看过不少人,能力一般,甚至没你努力,却升得飞快;而你,日复一日地拼命干活,升职这两个字却始终离你有点远。这种“不公平”的感觉,其实在很多职场人心里都曾经出现过。但你有没有想过,问题可能就藏在一些你“没当回事”的小细节里?今天,我们就来聊聊你升职总是比别人慢,可能是因为这三个被你忽略的小细节。第一:你做得多,但说得少你可能是那种“默默付出型”的员工。项目来了接着干,困难来了顶上去,别人不愿意做的事情你都做了。但问题是,这些事情你做了,却
    优思学院 2025-03-31 14:58 80浏览
  • 在不久前发布的《技术实战 | OK3588-C开发板上部署DeepSeek-R1大模型的完整指南》一文中,小编为大家介绍了DeepSeek-R1在飞凌嵌入式OK3588-C开发板上的移植部署、效果展示以及性能评测,本篇文章不仅将继续为大家带来关于DeepSeek-R1的干货知识,还会深入探讨多种平台的移植方式,并介绍更为丰富的交互方式,帮助大家更好地应用大语言模型。1、移植过程1.1 使用RKLLM-Toolkit部署至NPURKLLM-Toolkit是瑞芯微为大语言模型(LLM)专门开发的转换
    飞凌嵌入式 2025-03-31 11:22 189浏览
  • 在环保与经济挑战交织的当下,企业如何在提升绩效的同时,也为地球尽一份力?普渡大学理工学院教授 查德·劳克斯(Chad Laux),和来自 Maryville 大学、俄亥俄州立大学及 Trine 大学的三位学者,联合撰写了《精益可持续性:迈向循环经济之路(Lean Sustainability: Creating a Sustainable Future through Lean Thinking)》一书,为这一问题提供了深刻的答案。这本书也荣获了 国际精益六西格玛研究所(IL
    优思学院 2025-03-31 11:15 77浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 108浏览
  • 北京贞光科技有限公司作为紫光同芯产品的官方代理商,为客户提供车规安全芯片的硬件、软件SDK销售及专业技术服务,并且可以安排技术人员现场支持客户的选型和定制需求。在全球汽车电子市场竞争日益激烈的背景下,中国芯片厂商正通过与国际领先企业的深度合作,加速融入全球技术生态体系。近日,紫光同芯与德国HighTec达成的战略合作标志着国产高端车规芯片在国际化道路上迈出了关键一步,为中国汽车电子产业的发展注入了新的活力。全栈技术融合:打造国际化开发平台紫光同芯与HighTec共同宣布,HighTec汽车级编译
    贞光科技 2025-03-31 14:44 89浏览
  • 在智能语音交互设备开发中,系统响应速度直接影响用户体验。WT588F系列语音芯片凭借其灵活的架构设计,在响应效率方面表现出色。本文将深入解析该芯片从接收指令到音频输出的全过程,并揭示不同工作模式下的时间性能差异。一、核心处理流程与时序分解1.1 典型指令执行路径指令接收 → 协议解析 → 存储寻址 → 数据读取 → 数模转换 → 音频输出1.2 关键阶段时间分布(典型值)处理阶段PWM模式耗时DAC模式耗时外挂Flash模式耗时指令解析2-3ms2-3ms3-5ms存储寻址1ms1ms5-10m
    广州唯创电子 2025-03-31 09:26 185浏览
  •        在“软件定义汽车”的时代浪潮下,车载软件的重要性日益凸显,软件在整车成本中的比重逐步攀升,已成为汽车智能化、网联化、电动化发展的核心驱动力。车载软件的质量直接关系到车辆的安全性、可靠性以及用户体验,因此,构建一套科学、严谨、高效的车载软件研发流程,确保软件质量的稳定性和可控性,已成为行业共识和迫切需求。       作为汽车电子系统领域的杰出企业,经纬恒润深刻理解车载软件研发的复杂性和挑战性,致力于为O
    经纬恒润 2025-03-31 16:48 57浏览
  • Shinco音响拆解 一年一次的面包板社区的拆解活动拉开帷幕了。板友们开始大显身手了,拆解各种闲置的宝贝。把各自的设计原理和拆解的感悟一一向电子爱好者展示。产品使用了什么方案,用了什么芯片,能否有更优的方案等等。不仅让拆解的人员了解和深入探索在其中。还可以让网友们学习电子方面的相关知识。今天我也向各位拆解一个产品--- Shinco音响(如下图)。 当产品连接上电脑的耳机孔和USB孔时,它会发出“开机,音频输入模式”的语音播报,。告诉用户它已经进入音响外放模式。3.5mm耳机扣接收电脑音频信号。
    zhusx123 2025-03-30 15:42 107浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 84浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 108浏览
  • 在智能家居领域,无线门铃正朝着高集成度、低功耗、强抗干扰的方向发展。 WTN6040F 和 WT588F02B 两款语音芯片,凭借其 内置EV1527编解码协议 和 免MCU设计 的独特优势,为无线门铃开发提供了革命性解决方案。本文将深入解析这两款芯片的技术特性、应用场景及落地价值。一、无线门铃市场痛点与芯片方案优势1.1 行业核心痛点系统复杂:传统方案需MCU+射频模块+语音芯片组合,BOM成本高功耗瓶颈:待机电流
    广州唯创电子 2025-03-31 09:06 147浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 120浏览
  • 一、温度计不准的原因温度计不准可能由多种原因导致,如温度计本身的质量问题、使用环境的变化、长时间未进行校准等。为了确保温度计的准确性,需要定期进行校准。二、校准前准备工作在进行温度计校准之前,需要做好以下准备工作:1. 选择合适的校准方法和设备,根据温度计的型号和使用需求来确定。2. 确保校准环境稳定,避免外部因素对校准结果产生影响。3. 熟悉温度计的使用说明书和校准流程,以便正确操作。三、温度计校准方法温度计校准方法一般分为以下几步:1. 将温度计放置在
    锦正茂科技 2025-03-31 10:27 54浏览
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 72浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦