一文读懂频谱仪RBW(如何设置RBW才能实现更好的测试效果?)

EETOP 2022-04-22 12:03

来源:微波射频网

频谱仪是射频工程师最常用的设备之一,信号的频率、功率、谐波、相位噪声等诸多射频参数都需要使用频谱仪测试。使用频谱仪时,有一个参数需要经常设置,就是分辨率带宽(Resolution BW,简称RBW)。RBW是指中频链路上最小的中频滤波器带宽,决定了能够通过的信号及宽带噪声的功率,因此对频谱测试至关重要。

为什么将中频滤波器的带宽称为分辨率带宽?分辨率带宽对频谱测试有哪些影响?如何设置分辨率带宽?这些将是本文重点介绍的内容。

为什么称为分辨率带宽呢?

当测试CW信号的频谱时,您可能有过这样的体会:增大RBW时,信号频谱会“变胖”,而减小RBW时,信号频谱会“变瘦”,为什么会出现这样的情况?这样还能准确测试信号的频率和功率吗?

首先明确的是,对于CW信号,只要具有足够的信噪比,使用多大的RBW都是可以准确测试功率的,而单频点信号的频率测试也是不受RBW影响的。之所以在不同的RBW时具有不同的频谱形态,是因为看到的频谱实际上是中频滤波器的幅频响应。

对于扫频式频谱仪,中频是固定的,射频的扫描测试是通过LO的不断调谐实现的,正是由于LO的调谐才使得频谱呈现这样的形态。为了更加清晰地说明这一点,下面通过图示进行解释。

图1中,紫色谱线为RF信号的位置,红色谱线为LO调谐的位置,而蓝色谱线为IF——频谱仪的中频都是固定的值。浅蓝色曲线为Gaussian filter的幅频响应曲线,红色的圆点表示在LO不断调谐过程中,与RF信号混频后产生的中频信号的位置。

图1. LO不断调谐实现RF信号的扫描测试

图1. LO不断调谐实现RF信号的扫描测试(续)

LO调谐时,混频后的中频信号首先不断靠近频谱仪的IF,然后再逐步远离IF,假设混频器的变频损耗是平坦的,这意味着LO调谐过程中产生的所有中频信号的幅度都是相同的。但是,最终都要经过一个中心频率固定的中频滤波器,因此,最终呈现出的频谱就是这个中频滤波器的幅频响应曲线。

那么前面介绍的这些内容与分辨率有什么关系?

这是为了更好地理解下面的内容,前面是以单音信号为例,如果测试的是图2所示的等幅双音信号(绿色谱线),频谱将是怎样的呢?

如果双音信号频间距远远小于中频滤波器的带宽,那么频谱仪是无法“分辨”出这两根谱线的,而是“误认为”是一根谱线。当频间距与中频滤波器带宽相等时,频谱仪测得的频谱将如图2(中)所示,通常认为此时为可分辨的临界点。如果将RBW设置得远远小于频间距,则可以非常清晰的将两个信号分辨出来,如图2(右)所示。

图2. 中频滤波器的带宽决定了频谱仪区分双音信号的能力

类似地,对于多音信号,只有中频滤波器带宽远远小于最小频间距时,频谱仪才可以清晰地分辨出来。因此,中频滤波器的带宽决定了频谱仪的频率分辨率,这就是为什么将其称为分辨率带宽RBW的原因

为了使得频谱仪能够更好地分辨信号,如何设置RBW呢?其实没有一个定论,操作人员可以通过连续调整RBW的方式选择合适的值。通常情况下,对于等幅双音或多音信号,建议将RBW设置为最小频间距的1/10;对于非等幅信号,由于中频滤波器有限的带外选择性,需要将RBW设置得更小。

RBW除了影响分辨率,还会影响频谱仪哪些参数?

文章开头提到,RBW决定了能够通过中频滤波器的宽带噪声信号的功率,这也就意味着会影响频谱仪的底噪声水平。如果测试的是宽带信号,那么同样也会影响显示的信号功率大小。

当降低RBW时,频谱仪显示的底噪声也会随之而降,反之,当增大RBW时,底噪声也会随之增大。这就好比在教室上课,而外面很嘈杂,当将门逐渐关闭时,能听到的噪音越来越小,这是相同的道理。

如果要从理论上分析RBW对频谱仪底噪声的影响,那么就要从下面的公式说起。假设在室温下(290K),则频谱仪的底噪声为:

Noise Floor, rms = kBT* FSA * GSA

式中,k为玻尔兹曼常数,B为系统带宽,FSA为频谱仪整个链路的等效噪声因子,GSA为整个链路的增益。通常,频谱仪的链路都做了校准,因此GSA=1。

Noise Floor, rms = kBT* FSA

对于频谱仪而言,系统带宽B与RBW之间有一定的比例关系,这取决于所使用的中频滤波器的类型,比如目前广泛应用于频谱仪的Gaussian滤波器,系统带宽B与RBW基本相同。

为了便于理解,将上式写为对数形式,如下:

Noise Floor, rms = -174dBm/Hz + NFSA + 10lg(RBW)

由上式可知:RBW越大,频谱仪的底噪越高;RBW增大10倍,则底噪将抬高10dB

所以,当测试比较微弱的信号时,就可以通过降低RBW来提高频谱仪的测试灵敏度。

值得一提的是,当测试宽带信号的频谱时,比如数字调制信号或者宽带噪声信号,Marker显示功率值并不是一个频点的功率,而是RBW带宽内的总功率。当降低RBW时,Marker显示的功率值也会变小;同样,增大RBW时,Marker显示的功率值也会变大。这些变化都是正常的!

但是测试单频点信号的功率除外,只要具有足够的信噪比,无论RBW如何设置,Marker显示的功率值都是不变的!

RBW除了影响频谱仪的底噪和频率分辨率,对总体的扫描速度也有影响。当RBW设置得很小时,频谱仪的扫描速度会非常慢,这是因为:滤波器的带宽越小,瞬态响应时间越长,也就是需要更长的时间建立冲激响应。

如何设置RBW才能实现更好的测试效果?

具体如何设置RBW,与测试的信号特点以及测试参数都有一定的关系。需要根据RBW对频谱仪性能的影响,以及信号自身的特点,选择合适的RBW。下面列举了三种典型的测试场景,并给出了相应的推荐设置。

场景一:单频点信号的频谱测试

如果信号功率较大,无所谓RBW如何设置。但是,当信号很微弱时,就需要适当降低RBW,以降低底噪声,提高信噪比,比如测试杂散、高次谐波等。如果要保证一定的功率测试精度,则SNR至少要达到10dB以上。

场景二:多音信号的频谱测试

多音信号是指具有多个频率点的CW信号,如果各个频点的幅度相同,则建议RBW不超过最小频率间距的1/10,以完全分辨出各个信号。如果各个频点的幅度不同,那么RBW还需要设置得更小,以减少中频滤波器的滚降特性带来的影响。比如,测试射频脉冲信号的线状谱时,距离载波越远的谱线幅度越低,RBW要远远小于脉重频才可以实现清晰的观测。

场景三:带宽积分法测试宽带信号的总功率

测试宽带信号的总功率,应用更多的是带宽积分法,测试思路是,首先根据当前设置的RBW及对应的功率值计算出信号的功率谱密度,然后再对宽带信号进行积分,从而得到总功率值。

有些文献提到,采用带宽积分法测试宽带信号总功率时,由于中频滤波器有限的带外抑制度,在信号带宽左右两个边界处,无法对带外信号或噪声进行充分抑制,因此为了提高测试精度,建议将RBW选择为信号带宽的1%~3%。当然,RBW也不适合取太小,否则测试速度会非常慢。

其实,如果只是测试宽带信号的功率,大可不必将RBW设置得这么小,实测表明:RBW取为信号带宽的1/10,甚至更大,测得的信号功率并没有太大变化。

尽管如此,当测试诸如CDMA/WCDMA等无线通信信号的ACPR或者ACLR时,仍然建议RBW设置得小一点,这样在测试临道功率时,才能够抑制较强的信道信号,从而保证测试精度!

另外,还须注意,只有选择RMS检波器时,测得的功率才是真正的总功率。关于显示检波器的内容,将在后续的文章中详细地描述。

小结

笔者在初次使用频谱仪时,也有很多困惑,其中就包含对RBW的理解。为什么称为“分辨率”带宽,RBW对频谱仪有什么影响,对测试结果有什么影响,等等诸如此类的问题。经过不断的摸索和思考,对这些问题的理解也更加深入,整理下来分享给大家,希望对大家有所帮助。


芯片资料推荐

  • 模拟混合信号IC设计全流程、Tanner L-Edit版图及定制工艺设计等 IC设计必备资料及视频

  • 讲座视频+讲义:忆阻器存算一体芯片与类脑计算讲座

  • 视频+讲义:基于MOSFET结构的生物传感器结构及测试原理
EETOP EETOP半导体社区-国内知名的半导体行业媒体、半导体论坛、IC论坛、集成电路论坛、电子工程师博客、工程师BBS。
评论 (0)
  •  一、‌核心降温原理‌1、‌液氮媒介作用‌液氮恒温器以液氮(沸点约77K/-196℃)为降温媒介,通过液氮蒸发吸收热量的特性实现快速降温。液氮在内部腔体蒸发时形成气-液界面,利用毛细管路将冷媒导入蒸发器,强化热交换效率。2、‌稳态气泡控温‌采用‌稳态气泡原理‌:调节锥形气塞与冷指间隙,控制气-液界面成核沸腾条件,使漏热稳定在设定值。通过控温仪调整加热功率,补偿漏热并维持温度平衡,实现80K-600K范围的快速变温。二、‌温度控制机制‌1、‌动态平衡调节‌控温仪内置模糊控制系统,通过温度
    锦正茂科技 2025-04-30 11:31 52浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 135浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 464浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 317浏览
  • 在全球制造业加速向数字化、智能化转型的浪潮中,健达智能作为固态照明市场的引领者和智能电子以及声学产品的创新先锋,健达智能敏锐捕捉到行业发展的新机遇与新挑战,传统制造模式已难以满足客户对品质追溯、定制化生产和全球化布局的需求。在此背景下, 健达智能科技股份有限公司(以下简称:健达智能)与盘古信息达成合作,正式启动IMS数字化智能制造工厂项目,标志着健达智能数字化转型升级迈入新阶段。此次项目旨在通过部署盘古信息IMS系统,助力健达实现生产全流程的智能化管控,打造照明行业数字化标杆。行业趋势与企业挑战
    盘古信息IMS 2025-04-30 10:13 62浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 561浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 110浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 125浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 341浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 301浏览
我要评论
0
9
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦