图文并茂详解STM32时钟配置

嵌入式资讯精选 2022-04-22 11:38

1.概述

时钟是单片机的脉搏,是单片机的驱动源,使用任何一个外设都必须打开相应的时钟。这样的好处是,如果不使用一个外设的时候,就把它的时钟关掉,从而可以降低系统的功耗,达到节能,实现低功耗的效果。每个时钟tick,系统都会处理一步数据,这样才能让工作不出现紊乱。

2.原理
首先,任何外设都需要时钟,51单片机,STM32,430等等,因为寄存器是由D触发器组成的,往触发器里面写东西,前提条件是有时钟输入。


51单片机不需要配置时钟,是因为一个时钟开了之后所有的功能都可以用了,而这个时钟是默认开启的,比如有一个水库,水库有很多个门,这些门默认是开启的,所以每个门都会出水,我们需要哪个门的水的时候可以直接用,但是也存在一个问题,其他没用到的门也在出水,即也在耗能。这里水库可以认为是能源,门可以认为是每个外设的使用状态,时钟可以认为是门的开关。


STM32之所以是低功耗,他将所有的门都默认设置为disable,在你需要用哪个门的时候,开哪个门就可以,也就是说用到什么外设,只要打开对应外设的时钟就可以,其他的没用到的可以还是disable,这样耗能就会减少。


在51单片机中一个时钟把所有的都包了,而stm32的时钟是有分工的,并且每类时钟的频率不一样,因为没必要所有的时钟都是最高频率,只要够用就行,好比一个门出来水流大小,我只要洗脸,但是出来的是和洪水一样涌出来的水,那就gg了,消耗能源也多,所以不同的时钟也会有频率差别,或者在配置的时候可以配置时钟分频。

拓展:为何要先配置时钟,再配置GPIO(功能模块)

所有寄存器都需要时钟才能配置,寄存器是由D触发器组成的,只有送来了时钟,触发器才能被改写值。


任何MCU的任何外设都需要有时钟,8051也是如此;STM32为了让用户更好地掌握功耗,对每个外设的时钟都设置了开关,让用户可以精确地控制,关闭不需要的设备,达到节省供电的目的。


51单片机不用配置IO时钟,只是因为默认使用同一个时钟,这样是方便,但是这样的话功耗就降低不了。例如,某个功能不需要,但是它还是一直运行。


stm32需要配置时钟,就可以把不需要那些功能的功耗去掉。当你想关闭某个IO的时候,关闭它相对应的时钟使能就是了,不过在51里面,在使用IO的时候是没有设置IO的时钟的,还有在STM32中,有外部和内部时钟之分。ARM的芯片都是这样,外设通常都是给了时钟后,才能设置它的寄存器(即才能使用这个外设)。STM32、LPC1XXX等等都是这样。这么做的目的是为了省电,使用了所谓时钟门控的技术。这也属于电路里同步电路的范畴:同步电路总是需要1个时钟。

3.详述STM32时钟

STM32时钟系统主要的目的就是给相对独立的外设模块提供时钟,也是为了降低整个芯片的耗能。


系统时钟,是处理器运行时间基准(每一条机器指令一个时钟周期)

乍一看很吓人,但其实很好理解,我们看系统时钟SYSCLK 的左边 系统时钟有很多种选择,而左边的部分就是设置系统时钟使用那个时钟源,系统时钟SYSCLK 的右边,则是系统时钟通过AHB预分频器,给相对应的外设设置相对应的时钟频率。

从左到右可以简单理解为:各个时钟源—>系统时钟来源的设置—>各个外设时钟的设置

a. 时钟源

在STM32中,可以用内部时钟,也可以用外部时钟,在要求进度高的应用场合最好用外部晶体震荡器,内部时钟存在一定的精度误差。

准确的来说有4个时钟源可以选分别是HSI、LSI、HSE、LSE(即内部高速,内部低速,外部高速,外部低速),高速时钟主要用于系统内核和总线上的外设时钟。低速时钟主要用于独立看门狗IWDG、实时时钟RTC。

①、HSI是高速内部时钟,RC振荡器,频率为8MHz,上电后默认的系统时时钟 SYSCLK = 8MHz,Flash编程时钟


①、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz


③、LSI是低速内部时钟,RC振荡器,频率为40kHz,可用于独立看门狗IWDG、实时时钟RTC


④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体

PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。通过倍频之后作为系统时钟的时钟源( 网上有很多人说是5个时钟源,这种说法有点问题,学习之后就会发现PLL并不是自己产生的时钟源,而是通过其他三个时钟源倍频得到的时钟)。

举个例子:Keil编写程序是默认的时钟为72Mhz,其实是这么来的:外部晶振(HSE)提供的8MHz(与电路板上的晶振的相关)通过PLLXTPRE分频器后,进入PLLSRC选择开关,进而通过PLLMUL锁相环进行倍频(x9)后,为系统提供72Mhz的系统时钟(SYSCLK)。之后是AHB预分频器对时钟信号进行分频,然后为低速外设提供时钟。



或者内部RC振荡器(HSI) 为8MHz /2 为4MHz 进入PLLSRC选择开关,通过PLLMUL锁相环进行倍频(x18)后为72MHz。

b.系统时钟

系统时钟SYSCLK可来源于三个时钟源:
①、HSI振荡器时钟
②、HSE振荡器时钟
③、PLL时钟
最大为72MHz。

c.PLL 锁相环倍频(输入和输出)

PLL的输入3种选择:
①、PLLi = HSI /2
①、PLLi = HSE /2
③、PLLi = HSE

PLL的输出有15种选择:PLLout = PLLi Xn (n = 2…16)

d. USB时钟
STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取(唯一的),可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。

e.把时钟信号输出到外部

STM32可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。可以把时钟信号输出供外部使用。

f.系统时钟通过AHB分频器给外设提供时钟(右边的部分) 重点!!!

从左到右可以简单理解为:
系统时钟—>AHB分频器—>各个外设分频倍频器 —> 外设时钟的设置

右边部分为:系统时钟SYSCLK通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:


①内核总线:送给AHB总线、内核、内存和DMA使用的HCLK时钟。

②Tick定时器:通过8分频后送给Cortex的系统定时器时钟。

③I2S总线:直接送给Cortex的空闲运行时钟FCLK。

④APB1外设:送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给通用定时器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2-7使用。

⑤APB2外设:送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给高级定时器。该倍频器可选择1或者2倍频,时钟输出供定时器1和定时器8使用。

另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。

需要注意的是,如果 APB 预分频器分频系数是 1,则定时器时钟频率 (TIMxCLK) 为 PCLKx。否则,定 时器时钟频率将为 APB 域的频率的两倍:TIMxCLK = 2xPCLKx。

APB1和APB2对应外设

F4系列:

APB2总线:高级定时器timer1, timer8、通用定时器timer9, timer10, timer11、UTART1,USART6。

APB1总线:通用定时器timer2timer5、通用定时器timer12、timer14、基本定时器timer6、timer7、UTART2~UTART5

F4系列的系统时钟频率最高能到168M。

具体可以在 stm32f40x_rcc.h 中查看或者通过 STM32参考手册搜索“系统架构”或者“系统结构”查看外设挂在哪个时钟下。

g.RCC相关寄存器

Reset and clock control (RCC):
时钟配置,控制提供给各模块时钟信号的通断。

以F1系列为例:

RCC 寄存器结构,RCC_TypeDeff,在文件“stm32f10x.h”中定义如下:

1059行->1081行。:在这里插入代码片 typedef struct  {  vu32 CR;                  //HSI,HSE,CSS,PLL等的使能  vu32 CFGR;              //PLL等的时钟源选择以及分频系数设定vu32 CIR;                // 清除/使能 时钟就绪中断vu32 APB2RSTR;      //APB2线上外设复位寄存器vu32 APB1RSTR;      //APB1线上外设复位寄存器vu32 AHBENR;         //DMA,SDIO等时钟使能vu32 APB2ENR;       //APB2线上外设时钟使能vu32 APB1ENR;      //APB1线上外设时钟使能vu32 BDCR;           //备份域控制寄存器vu32 CSR;             } RCC_TypeDef;

RCC初始化

这里我们使用HSE(外部时钟),正常使用的时候也都是使用外部时钟。

使用HSE时钟,程序设置时钟参数流程:
1、将RCC寄存器重新设置为默认值 RCC_DeInit;
2、打开外部高速时钟晶振HSE RCC_HSEConfig(RCC_HSE_ON);
3、等待外部高速时钟晶振工作 HSEStartUpStatus = RCC_WaitForHSEStartUp();
4、设置AHB时钟 RCC_HCLKConfig;
5、设置高速AHB时钟 RCC_PCLK2Config;
6、设置低速速AHB时钟 RCC_PCLK1Config;
7、设置PLL RCC_PLLConfig;
8、打开PLL RCC_PLLCmd(ENABLE);
9、等待PLL工作 while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
10、设置系统时钟 RCC_SYSCLKConfig;
11、判断是否PLL是系统时钟 while(RCC_GetSYSCLKSource() != 0x08)
12、打开要使用的外设时钟 RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()

代码实现

对RCC的配置函数(使用外部8MHz晶振)  系统时钟72MHz,APH 72MHz,APB2 72MHz,APB1 32MHz,USB 48MHz TIMCLK=72Mvoid RCC_Configuration(void){    //----------使用外部RC晶振-----------    RCC_DeInit();                                 //初始化为缺省值    RCC_HSEConfig(RCC_HSE_ON);    //使能外部的高速时钟    while(RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET);    //等待外部高速时钟使能就绪        FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);    //Enable Prefetch Buffer    FLASH_SetLatency(FLASH_Latency_2);                                    //Flash 2 wait state        RCC_HCLKConfig(RCC_SYSCLK_Div1);          //HCLK = SYSCLK    RCC_PCLK2Config(RCC_HCLK_Div1);            //PCLK2 =  HCLK    RCC_PCLK1Config(RCC_HCLK_Div2);            //PCLK1 = HCLK/2    RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9);    //PLLCLK = 8MHZ * 9 =72MHZ    RCC_PLLCmd(ENABLE);            //Enable PLLCLK
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); //Wait till PLLCLK is ready RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //Select PLL as system clock while(RCC_GetSYSCLKSource()!=0x08); //Wait till PLL is used as system clock source //---------打开相应外设时钟-------------------- RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); //使能APB2外设的GPIOA的时钟 }

h.时钟监视系统

STM32还提供了一个时钟监视系统(CSS),用于监视高速外部时钟(HSE)的工作状态。倘若HSE失效,会自动切换(高速内部时钟)HSI作为系统时钟的输入,保证系统的正常运行。

1.国产单片机GD32替换STM32,这些细节别忽略!

2.这个C语言大坑你没见过?

3.单片机选型,不得不说的几个步骤~

4.这款开源的STM32外设驱动库,可以直接拿来用!

5.嵌入式软件详细设计怎么写?

6.RTOS打怪升级的4个段位,你是青铜还是王者?

免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。


嵌入式资讯精选 掌握最鲜资讯,尽领行业新风
评论
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 83浏览
  • 在不断发展的电子元件领域,继电器——作为切换电路的关键设备,正在经历前所未有的技术变革。固态继电器(SSR)和机械继电器之间的争论由来已久。然而,从未来发展的角度来看,固态继电器正逐渐占据上风。本文将从耐用性、速度和能效三个方面,全面剖析固态继电器为何更具优势,并探讨其在行业中的应用与发展趋势。1. 耐用性:经久耐用的设计机械继电器:机械继电器依靠物理触点完成电路切换。然而,随着时间的推移,这些触点因电弧、氧化和材料老化而逐渐磨损,导致其使用寿命有限。因此,它们更适合低频或对切换耐久性要求不高的
    腾恩科技-彭工 2025-01-10 16:15 102浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 198浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 529浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 471浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 498浏览
  • 电动汽车(EV)正在改变交通运输,为传统内燃机提供更清洁、更高效的替代方案。这种转变的核心是电力电子和能源管理方面的创新,而光耦合器在其中发挥着关键作用。这些不起眼的组件可实现可靠的通信、增强安全性并优化电动汽车系统的性能,使其成为正在进行的革命中不可或缺的一部分。光耦合器,也称为光隔离器,是一种使用光传输电信号的设备。通过隔离高压和低压电路,光耦合器可确保安全性、减少干扰并保持信号完整性。这些特性对于电动汽车至关重要,因为精确控制和安全性至关重要。 光耦合器在电动汽车中的作用1.电池
    腾恩科技-彭工 2025-01-10 16:14 82浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 448浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 463浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 68浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 507浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 110浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 328浏览
  • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
    艾体宝IT 2025-01-10 15:52 164浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 489浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦